Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elib.bspu.by/handle/doc/13907
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Русецкий, А. Ю. | - |
dc.date.accessioned | 2016-07-06T03:45:24Z | - |
dc.date.available | 2016-07-06T03:45:24Z | - |
dc.date.issued | 2016-06-08 | - |
dc.identifier.issn | 1818-8575 | - |
dc.identifier.uri | http://elib.bspu.by/handle/doc/13907 | - |
dc.description.abstract | В работе рассматривается задача Коши для линейной стохастической дифференциальной системы уравнений в алгебре обобщенных случайных процессов. Исследуются существования и единственности решений интегральных уравнений, которые являются ассоциированными решениями исходной задачи Коши в алгебре обобщенных случайных процессов. Доказывается теорема о представлении ассоциированных решений через ассоциированные фундаментальные матрицы. | ru_RU |
dc.language.iso | other | ru_RU |
dc.publisher | БГПУ | ru_RU |
dc.relation.ispartofseries | Серыя 3. Фізіка. Матэматыка. Інфарматыка. Біялогія. Геаграфія;№ 2(88) | - |
dc.subject | издания БГПУ | ru_RU |
dc.subject | линейная стохастическая дифференциальная система | ru_RU |
dc.subject | алгебра обобщенных случайных процессов | ru_RU |
dc.subject | ассоциированные решения | ru_RU |
dc.subject | ассоциированные фундаментальные матрицы | ru_RU |
dc.subject | linear stochastic differential system | ru_RU |
dc.subject | algebra of generalized random processes | ru_RU |
dc.subject | associated solutions | ru_RU |
dc.subject | associated fundamental matrices | ru_RU |
dc.title | ЛИНЕЙНЫЕ СТОХАСТИЧЕСКИЕ ДИФФЕРЕНЦИАЛЬНЫЕ СИСТЕМЫ В АЛГЕБРЕ ОБОБЩЕННЫХ СЛУЧАЙНЫХ ПРОЦЕССОВ | ru_RU |
dc.title.alternative | LINEAR STOCHASTIC DIFFERENTIAL SYSTEMS IN ALGEBRA OF GENERALIZED RANDOM PROCESSES | ru_RU |
dc.type | Article | ru_RU |
Располагается в коллекциях: | Серыя 3, Фізіка. Матэматыка. Інфарматыка. Біялогія. Геаграфія |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
216304.pdf | статья | 682,1 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.