Учреждение образования
«Белорусский государственный педагогический университет имени Максима Танка»

Факультет естествознания
Кафедра общей биологии и ботаники

СОГЛАСОВАНО
Заведующий кафедрой
общей биологии и ботаники
А.В. Деревинский
2017 г.

СОГЛАСОВАНО
Декан факультета
естествознания
Н.В. Наumenко
2017 г.

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ПО УЧЕБНОЙ ДИСЦИПЛИНЕ
«МЕТОДИКА РЕШЕНИЯ БИОЛОГИЧЕСКИХ ЗАДАЧ»

для специальностей: 1-02 04 01 Биология и химия;
1-02 04 02 Биология и география

Составитель: А.А. Пугик, старший преподаватель

Рассмотрено и утверждено
на заседании Совета БГПУ 16 06 2017 г. протокол № 10
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебно-методический комплекс учебной дисциплины «Методика решения биологических задач» предназначен для научно-методического обеспечения процесса подготовки студентов по специальностям: 1-02 04 01 Биология и химия, 1-02 04 02 Биология и география.

Цель учебно-методического комплекса — оказание методической помощи студентам в систематизации учебного материала в процессе подготовки к текущей аттестации по учебной дисциплине «Методика решения биологических задач», формирование системы методических знаний и способов деятельности, необходимых для организации школьного практикума по решению задач и обеспечивающих эффективное осуществление процесса обучения биологии.

Структура учебно-методического комплекса учебной дисциплины состоит из четырех разделов: теоретического, практического, раздела контроля знаний и вспомогательного.

В теоретическом разделе УМК конспективно изложен лекционный материал, соответствующий требованиям учебной программы данной учебной дисциплины.

Практический раздел представлен учебным пособием «Методика решения биологических задач», предназначенным для освоения алгоритма решения различных типов биологических задач и дальнейшее использование приобретенных умений в профессиональной деятельности. Пособие включает методику решения морфологических, генетических, экологических задач, задач по физиологии человека и животных, востребованных на всех этапах уроков биологии разных типов, во внеурочной работе.

Раздел контроля знаний включает материалы для мониторинга результатов учебно-познавательной деятельности студентов.

Вспомогательный раздел содержит учебно-программные материалы (учебная программа для студентов дневной и заочной форм получения высшего образования), перечень учебных изданий и информационно-аналитических материалов.

Разделы, включенные в комплекс, предназначены для оптимального сопровождения образовательного процесса и развития у студентов мировоззренческих и социокультурных компетенций, необходимых для решения профессиональных задач, исполнения социальных, гражданских и личностных функций в современном обществе.

С помощью учебной программы по дисциплине можно получить информацию о тематике лекций и практических занятий, перечнях рассматриваемых вопросов и рекомендуемой для их изучения литературы.

Для подготовки к практическим занятиям и зачету необходимо использовать материалы, представленные в теоретическом, практическом разделе, а также материалы для текущего контроля знаний и самостоятельной работы.

Учреждение образования
«Белорусский государственный педагогический университет имени Максима Танка»

УТВЕРЖДАЮ
Проректор по учебной и
информационно-аналитической работе БГПУ

В.М.Зеленкевич

Регистрационный № УД-_________ /раб.

МЕТОДИКА РЕШЕНИЯ БИОЛОГИЧЕСКИХ ЗАДАЧ
(дисциплина по выбору)

Учебная программа для специальностей:
1-02 04 01 Биология и Химия;
1-02 04 02 Биология и География

Факультет естествознания
Кафедра общей биологии
Курс (курсы) – четвертый
Семестр (семестры) – восьмой

Лекции – 16 часов
Практические(семинарские) занятия – 14 часов
Лабораторные занятия – нет
Всего аудиторных часов по дисциплине – 30
Всего часов по дисциплине –60

Экзамен – нет
Зачет– восьмой семестр
Курсовой проект (работа) – нет
Форма получения высшего образования – очная (дневная)
Составила А.А. Путяк, старший преподаватель

2016 г.
Учебная программа составлена на основе образовательного стандарта, утверждена _____________, регистрационный № _________________.

Рассмотрена и рекомендована к утверждению кафедрой общей биологии
(«» 2016 г. протокол №)

Заведующий кафедрой
______________ А.В. Деревинский

Одобrena и рекомендована к утверждению Советом факультета
eстествознания учреждения образования «Белорусский государственный
педагогический университет имени Максима Танка»
(«» 2016 г. протокол №)

Председатель
______________ Н.В. Наumenko

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Дисциплина «Методика решения биологических задач» предназначена для подготовки студентов по специальностям: 1-02 04 01 «Биология и Химия»; 1-02 04 02 «Биология и География».

Цель дисциплины – формирование у будущих учителей системы методических знаний и способов деятельности, необходимых для организации школьного практикума по решению задач и обеспечивающих эффективное осуществление процесса обучения биологии.

Задачи дисциплины:
- выработка профессиональных практических навыков по решению биологических задач разных типов;
- освоение методики обучения учащихся приемам решения биологических задач;
- формирование научного мировоззрения при использовании методов по развитию разных видов и способов мышления.

Дисциплина «Методика решения биологических задач» базируется на знаниях, полученных студентами при изучении методики преподавания биологии школьного биологического эксперимента, специальных биологических дисциплин (биохимии, цитологии, генетики и др.)

Программа курса предполагает формирование у студентов системы знаний и умений, обеспечивающих освоение ими требований обязательного минимума Государственного образовательного стандарта в контексте основных содержательных линий.

Владение методикой решения биологических задач предусматрено профдисциплиной «Учитель биологии», которая является идеальной моделью квалификационной подготовки специалиста и отражает важнейшие аспекты деятельности преподавателя.

В результате изучения дисциплины будущий специалист должен знать:
- классификацию школьных биологических задач, их роль в актизации познавательной деятельности и развитии интеллектуальных умений учащихся;
- требования учебной программы по биологии в средней школе к умениям учащихся по решению задач;
- приемы современных технологий по составлению и решению биологических задач.

уметь:
- использовать знания методики решения биологических задач при организации процесса обучения биологии;
- определять роль и возможности биологических задач на всех этапах уроков биологии разных типов, во внеклассной и внеурочной работе;
- обучать учащихся приемам решения биологических задач.

Система организационных форм обучения методике решения биологических задач включает лекции, семинарские занятия и самостоятельную (внеаудиторную, учебно-исследовательскую) работу.
Лекции вводят студентов в методику решения биологических задач, формируют методологические и теоретические ориентиры для дальнейшей самостоятельной работы с содержанием учебного материала.

Семинарские занятия детализируют лекционный материал и обеспечивают переход знаний в интеллектуальные и практические способы деятельности.

Самостоятельная работа студентов по усвоению методических знаний, способов действия и творческого опыта усиливает все другие формы подготовки, усложняет учебные мотивы, совершенствует обобщенные приемы учения, обеспечивает профессиональное и личностное развитие.

Освоение дисциплины предполагает использование методов современных педагогических технологий развивающего, продуктивного и личностно-ориентированного характера.

Мониторинг результатов учебно-познавательной деятельности студентов осуществляется путем диагностики и контроля знаний в ходе семинаров, контрольной работы и зачета.

Всего на изучение дисциплины отводится 60 часов, из них 30 аудиторных (16 часов - лекции, 14 часов - практические занятия), 1,5 зачетных единиц.

ТЕМАТИЧЕСКИЙ ПЛАН
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Темы занятий</th>
<th>Количество аудиторных часов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>всего</td>
</tr>
<tr>
<td></td>
<td></td>
<td>лекций</td>
</tr>
<tr>
<td>1.</td>
<td>Введение в учебную дисциплину «Методика решения биологических задач»</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Методика решения и составления школьных биологических задач</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>Методика решения цитологических задач</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>Методика решения генетических задач</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Методика решения экологических задач</td>
<td>6</td>
</tr>
<tr>
<td>6.</td>
<td>Физиологические задачи школьного курса биологии</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Всего</td>
<td>30</td>
</tr>
</tbody>
</table>
Тema 1. Введение в учебную дисциплину «Методика решения биологических задач»

Цель и задачи учебной дисциплины. Требования к владению методикой решения школьных биологических задач в соответствии с квалификационной характеристикой учителя биологии. Роль биологических задач в формировании знаний, способов действий, эмоционально-ценностных отношений и опыта творческой деятельности учащихся. Требования образовательных стандартов и учебной программы к результатам обучения учащихся и уровню владения умениями решения биологических задач.

Тema 2. Методика решения и составления школьных биологических задач

Система школьных биологических задач. Классификация биологических задач по положению в курсе школьной биологии, соответственно уровню возрастных и интеллектуальных возможностей, формируемым способам и видам мышления учащихся, дидактическим целям урока.

Потенциальные возможности биологических задач для эффективной организации и реализации ориентировочно-мотивационного, операционно-познавательного и оценочно-рефлексивных этапов урока. Задачи в курсе «Биология» 7 класса, их роль в активизации познавательной деятельности школьников. Создание и развитие образовательной ситуации с помощью биологических задач в курсе «Биология» 8 класса. Актуализация опорных знаний и субъективного опыта учащихся путем использования биологических задач при освоении школьной биологии 9 класса.

Методика применения биологических задач в практикуме по применению новых знаний, на этапе обобщения и систематизации информации в 10 - 11 классах. Организация образовательной рефлексии, диагностики и контроля знаний с помощью биологических задач.

Приемы современных педагогических технологий в моделировании и решении и школьных биологических задач. Методика решения задач с помощью технологии ТРИЗ (теория решения изобретательских задач) и ТРКМ (технологии развития критического мышления).

Тema 3. Методика решения цитологических задач

Задачи темы «Химические компоненты живых организмов». Практические работы «Решение задач на строение и свойства белков, углеводов, липидов», «Решение задач на строение и свойства нуклеиновых кислот».

Задачи темы «Клетка – структурная и функциональная единица живых организмов». Практическая работа «Решение задач на механизмы репликации, деления клетки, определения результатов деления, плоидность клетки».

Задачи темы «Обмен веществ и превращение энергии в организме». Практические работы «Решение задач на энергетический и пластический обмен».
Тема 4. Методика решения генетических задач
Реакции матричного синтеза. Практическая работа «Решение задач на транскрипцию и транслацию».
Задачи темы «Наследственность и изменчивость организмов».

Тема 5. Методика решения экологических задач
Задачи темы «Организм и среда». Практическая работа «Изучение приспособленности организмов к экологическим факторам».
Задачи темы «Экосистемы». Практические работы «Решение задач на составление и анализ цепей питания», «Решение задач на построение и анализ экологических пирамид, правило 10%», «Решение задач на балансовое равенство в экосистеме».

Тема 6. Методика решения задач по физиологии человека и животных
Нейрогуморальная регуляция деятельности организма. Задачи на составление рефлекторных дуг безусловных рефлексов соматической и вегетативной нервной системы. Задачи на составление рефлекторных дуг условных рефлексов. Задачи на механизм передвижения биологически активных соединений в кровеносно-сосудистой системе.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ
Список основной и дополнительной литературы
Основная
1. Абросимов, М.В. Биология: контроль знаний/ М.В.Абросимов. – Минск: Аверсэв, 2017
2. Ивашенко, Н.В. Биология.Контрольные и самостоятельные работы. Тестовые задания/ Н.В.Ивашенко, М.Л.Дашков, В.В.Гричик, М.Ю. Немчинов.- Минск: Аверсэв, 2013
3. Дубков, С.Г., Богачева, И.В., Клевец, И.Р. Сборник задач по общей биологии/ С.Г. Дубков. – Минск, 2016
5. Писарчик, Г.А. Биология 10 – 11 класс: сборник задач и упражнений/ Г.А. Писарчик, Н.Д. Лисов. – Минск: Аверсэв, 2014

Дополнительная
11. Селевко, Г.К. Энциклопедия образовательных технологий: в 2 т./ Г.К.Селевко. – М.:НИИ школьных технологий, 2006
12. Тамберг, Ю.Г. Как научить ребенка думать/ Ю.Г.Тамберг. –СПб: «Михаил Седов» Екатеринбург, 2002
13. Тамберг, Ю.Г. Развитие интеллекта ребенка/ Ю.Г. Тамберг. – Екатеринбург: У – Фактория, 2004
15. Бутвиоловский, В.Э.Медицинская биология и общая генетика. Сборник задач/ В.Э. Бутвиоловский, В.В. Давыдов, Р.Г.Заяц. – Минск:БГМУ, 2009

Учебно – методическое пособие «Методика решения биологических задач»

Введение
Тенденции развития современной школы предполагают перевод процесса обучения на технологический уровень на основе компетентностного подхода. Учебно – методическое пособие включает дидактические материалы для организации практических занятий студентов по курсу «Методика решения биологических задач», адаптированные к содержанию действующей учебной программы по биологии в средней школе на базовом и повышенном уровне, а также программы факультативных занятий по биологии. Владение методикой решения биологических задач
предусмотрено профессиограммой учителя биологии и направлено на формирование у будущих учителей системы методических знаний и способов деятельности, необходимых для организации школьного практикума по решению задач.

Материалы пособия направлены на освоение алгоритма решения различных типов биологических задач и использование приобретенных умений в профессиональной деятельности при организации всех этапов уроков биологии, внеурочной и внеклассной деятельности учащихся.

1. Задачи по теме «Химические компоненты живых организмов»

1. Гемоглобин крови человека содержит 0,34% железа. Вычислите молекулярную массу гемоглобина, если атомная масса железа равна 56.

2. Вычислите молекулярную массу дисахарида мальтозы, учитывая, что его молекула состоит из двух остатков глюкозы C₆H₁₂O₆.
3. Какова относительная молекулярная масса полисахарида, образованного соединением 50 молекул глюкозы путем поликонденсации?

4. Альбумин сыворотки крови человека имеет относительную молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка, принимая во внимание, что средняя относительная молекулярная масса одной аминокислоты равна 120.

5. Какое количество метаболической воды образуется у медведя в период зимней спячки из 5 кг жира?

6. Сколько кДж энергии выделяется в результате превращения 100 молекул АТФ в АМФ?

7. На бег трусой в течение часа организм затрачивает 2100 кДж энергии. Сколько граммов жира необходимо для компенсации потерь энергии за 20 минут такой пробежки?

8. За одну тренировку легкоатлет расходует 3800 кДж энергии. Какое количество углеводов или жиров пищи может компенсировать этот расход энергии?

9. В чай добавили 10 г свекловичного сахара, содержащего 95% сахарозы. Сколько энергии может усвоить организм из данной порции сахара при КПД 56%?

10. При окислении 100 г жира выделилось 1550 кДж энергии. Сколько жира не подверглось окислению?
11. Сколько шоколада с содержанием масла какао 35 % необходимо съесть, чтобы компенсировать энергию, затраченную на бег трусцой (2100 кДж/ч) в течение получаса, только за счет жиров, содержащихся в шоколаде? КПД процесса усвоения энергии 60%.

12. Определите, сколько остатков фосфорной кислоты имеет участок молекулы ДНК, если адениловые нуклеотиды составляют 10% от общего количества нуклеотидов этого участка и с ними связано 2000 остатков фосфорной кислоты?

13. Определите количество остатков дезоксирибозы в участке молекулы ДНК, если адениловые нуклеотиды в нем составляют 30% от общего количества нуклеотидов и с ними связано 1440 остатков дезоксирибозы.

14. Сколько адениловых нуклеотидов содержится во фрагменте молекулы ДНК, если в нем обнаружено 76 цитидиловых нуклеотидов, что составляет 20% от общего количества нуклеотидов в этом фрагменте ДНК?

15. Фрагмент молекулы ДНК состоит из 5760 нуклеотидов, из них 1125 тимидиловых нуклеотидов. Определите количество адениловых, гуаниловых и цитидиловых нуклеотидов в данном фрагменте молекулы ДНК.

16. Определите суммарное количество водородных связей, которые образуются между комплементарными азотистыми основаниями участка молекулы ДНК, если одна из цепей имеет следующую нуклеотидную последовательность: ГАТ АЦЦ ГТЦ АТА.
17. Длина фрагмента молекулы ДНК равна 68 нм, что составляет 10% от длины всей молекулы. Определите относительную молекулярную массу и длину всей молекулы ДНК, принимая во внимание, что относительная молекулярная масса одного нуклеотида равна 354.

18. Какое количество молекул АТФ образуется в процессе спиртового брожения из 10 молекул глюкозы?

2. Задачи по теме “Обмен веществ и энергии в клетке”

1. В процессе диссимиляции произошло расщепление 7 молей глюкозы, из которых полному (кислородному) расщеплению подверглись только 2 моля. Определите, сколько молей молочной кислоты и углекислого газа при этом образовалось? Сколько всего АТФ синтезировалось? Сколько молей кислорода следует добавить для полного окисления образовавшейся в данных условиях молочной кислоты?

2. Водоросли и инфузории живут вместе в замкнутом сосуде, стоящем на свету. Инфузории потребляют 0,11 моль глюкозы в неделю, водоросли – 0,12 моль глюкозы в неделю. Суммарная недельная продукция глюкозы составляет 0,25 моль. Как изменится содержание кислорода в этом сосуде через неделю?

3. В одном сосуде, содержащем 100 г растворенной глюкозы, находится эвгlena зеленая и инфузория. Сколько глюкозы будет в этом сосуде через 10 мин на свету, если известно, что продуктивность fotosинтеза – 8 г в минуту, а на диссимиляцию эвгlena зеленая
расходует 2 г глюкозы, инфузория – 3 г в минуту? Сколько глюкозы будет в этом сосуде через 10 минут в темноте?

5. Пептид имеет следующую аминокислотную последовательность: Гли – Арг – Гли – Вал – Цис – Про. Определите длину (нм) кодирующей цепи ДНК, если линейная длина одного нуклеотида в среднем составляет 0,34 нм.

6. Участок кодирующей цепи молекулы ДНК имеет следующую нуклеотидную последовательность: ГГА АЦА ЦГГ ГГТ ААА ТАЦ ЦЦЦ ТАА. Определите длину (нм) первичной структуры закодированного пептида, если линейная длина одного аминокислотного остатка в полипептидной цепи в среднем составляет 0,35 нм.

8. Транскрибируемый участок цепи молекулы ДНК имеет следующую нуклеотидную последовательность: ГЦА ЦГГ AAA ЦГГ АТЦ ЦГА. Сколько молекул аланина включится в пептид при трансляции, если известно, что аминокислоту аланин в рибосому могут доставить тРНК, имеющие антикодоны ЦГА, ЦГГ, ЦГУ, ЦГЦ, а термирующим является кодон УАГ?

9. Исследования показали, что в молекуле и-РНК 30% от общего числа нуклеотидов приходится на урацил, 26% - на цитозин, 24% - на аденин. Определите процентное содержание гуанина в составе участка двухцепочной ДНК, слепком с которой является указанная и-РНК.

10. Определите последовательность нуклеотидов в антикодонах т-РНК, если известно, что нетранскрибируемая цепь молекулы ДНК имеет следующий вид: 5' – АГГ ГГТ ЦГА ЦГГ ТГА–3'.

11. Перед трансляцией во фрагменте и-РНК произошла делеция нуклеотидов ГУА перед терминирующим кодоном. После мутации фрагмент приобрел следующий вид: ГЦГАУУУГА. Запишите последовательность нуклеотидов цепи ДНК, кодирующей исходный фрагмент и-РНК.

12. Перед трансляцией во фрагменте и-РНК произошла дупликация терминирующего триплета. После мутации фрагмент приобрел следующий вид: АУГ АУГ ЦЦГ ЦЦГ УАА УАА. Запишите последовательность нуклеотидов цепи ДНК, кодирующей исходный фрагмент и - РНК.
13. Перед трансляцией во фрагменте иРНК произошла дупликация инициирующего кодона и делеция нуклеотидов ГУА перед терминирующим кодоном. После мутации фрагмент приобрел следующий вид: АУГАУГГЦГАУУУГА. Запишите последовательность нуклеотидов цепи ДНК, кодирующей исходный фрагмент иРНК.

14. Молекула вновь синтезированного белка содержит 90 аминокислотных остатков. Известно, что участок транскрибируемой цепи ДНК содержал два интрона (отрезки, которые не несут генетической информации, относящейся к синтезу белка) по 7 и 8 нуклеотидов соответственно. Перед трансляцией в и-РНК произошла мутация — делеция 5 нуклеотидов. Сколько всего нуклеотидов содержал указанный участок цепи молекулы ДНК? При расчетах наличие стоп — кодонов не учитывайте.

15. Молекула вновь синтезированного белка содержит 100 аминокислотных остатков. Известно, что участок транскрибируемой цепи ДНК содержал два интрона по 10 и 5 нуклеотидов соответственно. После транскрипции в и-РНК случилась мутация — делеция 9 нуклеотидов. Перед трансляцией в и-РНК произошла дупликация стартового кодона. Сколько всего нуклеотидов содержал указанный участок цепи молекулы ДНК? При расчетах наличие стоп — кодонов не учитывайте.

16. Фрагмент и - РНК имеет последовательность нуклеотидов АУГ ЦАГ ГГЦ АУГ. Укажите последовательность нуклеотидов в этом фрагменте после дупликации по двум первым нуклеотидам третьего кодона и инверсии нуклеотидов второго кодона.
17. Фрагмент и - РНК имеет последовательность нуклеотидов АУГ ЦАГ ГГЦ АУГ УАА. Укажите последовательность нуклеотидов в этом фрагменте после замены пиримидинового основания комплементарным пуриновым в третьем кодоне и дупликации термирующего кодона.

18. Пептид состоит из 8 аминокислот, которым соответствуют следующие кодоны в молекуле и-РНК: ГУЦ ГУЦЦАЦ АЦЦ УГГ ЦЦУ ГАА ААГ. Рассчитайте процентное содержание тимина на участке цепи молекулы ДНК, кодирующей данный пептид.

19. Средняя относительная молекулярная масса аминокислоты 110, а нуклеотида около 300. Во сколько раз ген, в котором зашифрована информация о строении белка, тяжелее самой молекулы белка?

20. Нуклеиновая кислота фага имеет молекулярный вес около 88200000. Сколько белков (примерно) закодировано в ней, если принять, что типичный белок состоит в среднем из 420 мономеров, а молекулярная масса нуклеотида около 350?

3. Задачи по теме “Взаимодействие аллельных и неаллельных генов”.

1. Двух черных самок мыши скрестили с коричневым самцом. За несколько пометов у первой самки появилось 25 черных и 24 коричневых, а у второй самки – 15 черных потомков. От скрещивания коричневых мышей между собой рождались только коричневые
помехи. Определите ожидаемое расщепление по фенотипу от скрещивания черных потомков первой самки и черных потомков второй самки.

2. У томатов ген, определяющий красную окраску плодов, доминантен по отношению к гену желтой окраски. Полученные из гибридных семян 30 кустов томатов имели желтую окраску, а 90 – красную. Сколько растений, скорее всего, будут гетерозиготными?

3. При скрещивании пегих кроликов с равномерно окрашенными в потомстве появились только пегие крольчатки. В F2 – 24 пегих крольчонка и 8 равномерно окрашенных. Какое количество крольчат среди 24 пегих, скорее всего, будет гомозиготным?

4. Ген A в гомозиготном состоянии летаен, а в гетерозиготном – определяет формирование уменьшенных глазных яблок. Его аллель a определяет нормальное развитие глазных яблок. Определите расщепление по фенотипу среди новорожденных жизнеспособных щенят, полученных от скрещивания собак с уменьшенными глазными яблоками.

5. Масть крупного рогатого скота наследуется по типу неполного доминирования (домinantный признак – коричневая масть, рецессивный признак – белая масть, промежуточный признак – чалая масть). Чалых коров скрещивают с чалыми быками. Установлено, что еще до оплодотворения гибнет 20% гамет, несущих домinantный аллель, и 80% гамет, несущих рецессивный аллель. Рассчитайте процентное соотношение потомков со всеми возможными фенотипами.
6. Определите, каким будет расщепление по фенотипу во втором поколении моногибридного скрещивания, если у мужских организмов жизнеспособные гаметы образуются в соотношении 0,8 А: 0,2 а, у женских – в соотношении 0,4 А: 0,6 а?

7. У морских свинок вскелеченная шерсть (A) доминирует над гладкой (a), а черная окраска (C) над белой (c). Скрещивается вскелеченное черное животное (AaCc) с вскелеченным белым (Aacc). Какова вероятность (в процентах) появления в потомстве морских свинок с гладкой черной шерстью?

8. У флоксов белая окраска цветков (A) доминирует над кремовой (a), а плоский венчик (B) – над воронковидным (b). Признаки наследуются независимо. Растение с белыми воронковидными цветками скрещено с растением, имеющим кремовые плоские цветки. Из 76 потомков 37 имеют белые плоские цветки, 39 – кремовые плоские. Установите генотипы родителей.

9. Дрозофилу (гомозиготную только по окраске тела) с серым телом и нормальными крыльями (домinantные признаки) скрестили с дрозофилой желтого цвета и узкими крыльями. Какое потомство можно ожидать от этого скрещивания?

10. У человека ахондроплазия (карликовость) доминирует над нормальным строением скелета, при этом в гомозиготном состоянии аллель ахондроплазии вызывает гибель эмбрионов. Курчавость волос наследуется по промежуточному типу (курчавые, волнистые, прямые волосы). Оба признака являются аутосомными и наследуются независимо. Определите вероятность (в %) рождения детей с нормальным скелетом и волнистыми волосами в семье, в которой оба родителя страдают ахондроплазией и имеют волнистые волосы.
11. У гречихи размер зерна определяется взаимодействием двух аллелей одного гена, цвет – взаимодействием двух других аллелей. При скрещивании растений со светлыми зернами в F1 выявились расщепление: 1 часть растений была с темными семенами, 2 части – со светлыми, 1 часть – с белыми. Известно также, что половина растений имела крупные семена, половина – мелкие. Рассчитайте долю растений (в %) со светлыми мелкими семенами в F1.

12. Пестролистность у бегоний сорта «Флер» обусловлена рецессивным геном f, а у бегонии сорта «Сэнк» – рецессивным геном s (гены находятся в разных хромосомах). При скрещивании дигетерозиготных растений указанных сортов все полученные гибриды имеют листву зеленого цвета. Сколько бегоний (в %) в потомстве F₂ будут являться носителями двух разных генов пестролистности одновременно, имея при этом зеленые листва?

13. У белого клевера наличие цианида в листвах обусловлено сочетанием двух неаллельных домinantных генов С и Р. При отсутствии одного из них или обоих цианид не образуется. При скрещивании растения сСрр с растением ссРР получено потомство, которое при самоопылении (в F₂) дало 800 растений. Сколько растений второго поколения имеют цианид в листвах?

14. У кур ген С детерминирует окраску оперения, ген с – белое оперение. Ген I подавляет развитие окраски, его рецессивный аллель i не оказывает подавляющего действия. Белый дигетерозиготный самец скрещен с белой самкой ssii. Сколько цыплят (в процентах) будут иметь окрашенное оперение.
15. Окраска шерсти у кроликов определяется двумя парами генов, расположенными в разных хромосомах. При наличии доминантного гена В доминантный ген А другой пары обусловливает серую окраску шерсти, рецессивный ген а — черную окраску. При отсутствии гена В окраска будет белая. Какой процент серых крольчат следует ожидать от скрещивания серых дигетерозиготных кроликов?

16. Окраска бобов люпина может быть пурпурной, желтой и белой. Под действием гена А неокрашенное соединение переводится в пурпурный пигмент. Неаллельный ему ген В вызывает превращение пурпурного вещества в желтое. Скрещены два дигетерозиготных растения. Какова вероятность (в %) появления потомков с белыми бобами?

17. При скрещивании двух растений глоксинии с белыми цветками в первом поколении все растения были с белыми цветками, а во втором поколении гибридные формы дали расщепление: 260 растений имели белый венчик и 60 — красный. Определив тип взаимодействия неаллельных генов, рассчитайте процент растений с красными цветами, которые можно получить при скрещивании дигомозиготной формы с красным венчиком и дигетерозиготной формы с белыми цветами.

18. За окраску шерсти у свиней отвечают два гена. При скрещивании дигомозиготных черных и белых свиней разных пород все потомство имело белую окраску. Среди гибридов второго поколения 84 поросенка были белыми, 21 — черными и 7 — красными. Какое количество (в %) потомства, полученного от хряка из первого поколения и красной свиньи, будет белым?
19. Среди ферментов, участвующих в образовании хлорофилла у ячменя, имеется два фермента, отсутствие которых приводит к нарушению синтеза этого пигмента. Если нет одного из них, то зеленое растение становится белым, если нет другого – желтым. При отсутствии обоих ферментов растение также белое. Синтез каждого фермента контролируется домinantным геном. Гены находятся в разных хромосомах. Какой процент желтых растений следует ожидать в потомстве при самоопылении дигетерозиготного ячменя?

4. Задачи по теме «Наследование признаков, сцепленных с полом. Сцепленное наследование признаков»

1. У ящериц гомогаметным является мужской пол (ZZ), а гетерогаметным (ZW) – женский. Ген окраски тела находится в Z-хромосоме. Красная окраска доминирует над серой. Определите, каким будет потомство от скрещивания красной самки с серым самцом.

2. У одного из видов аквариумных рыбок гомогаметным является женский пол (XX), а гетерогаметным (XY) – мужской. Ген, определяющий окраску тела, находится в X-хромосоме. В потомстве от скрещивания красной самки с синим самцом - все самки оказались синими, а все самцы – красными. Какой цвет доминирует?

3. Серую курицу скрестили с черным петухом. Гены, определяющие окраску, локализованы в X-хромосоме, серый цвет доминирует. Рассчитайте процент петухов серого цвета у гибридов второго поколения.
4. Женщина, имеющая гипоплазию эмали зубов, вышла замуж за мужчину с таким же дефектом. От этого брака родился мальчик, не страдающий данной болезнью. Известно, что ген, ответственный за развитие гипоплазии эмали зубов, доминантный и локализован в Х-хромосоме. Определите вероятность (в %) появления в этой семье девочки с дефектом эмали.

5. У кошек гены, контролирующие окраску шерсти, находятся в X – хромосоме и проявляют неполное доминирование. При скрещивании черной кошки с рыжим котом в первом поколении были получены черные самцы и черепаховые самки. Какое количество котят черепаховой окраски (в %) следует ожидать во втором поколении?

6. У домашней кошки ген, определяющий окраску шерсти, сцеплен с полом и характеризуется неполным доминированием. Домinantные гомозиготы имеют полосатую окраску, гетерозиготы – черепаховую, рецессивные гомозиготы – рыжие. Проявление окраски зависит от аутосомных эпистатических генов, которые в домinantном состоянии подавляют проявление окраски, в рецессивном - не влияют на проявление окраски. В потомстве белой кошки и полосатого кота один кот рыжий, один кот белый, одна белая, одна полосатая и одна черепаховые кошки. Какой генотип был у матери?

7. Гипертрихоз передается через У – хромосому, а полидактилия – доминантный аутосомный признак. В семье, где отец имел гипертрихоз, а мать полидактилию, родилась дочь, нормальная в отношении обоих признаков. Какова вероятность того, что следующий ребенок в этой семье также будет без обеих аномалий?
8. Женщина-правша, гетерозиготная по этому аутосомному признаку, имеющая нормально развитые потовые железы (признак наличия потовых желез является X-сцепленно-домinantным), отец которой страдал отсутствием потовых желез, вышла замуж за здорового в отношении потовых желез мужчину-правшу, мать которого была левшей. Какова вероятность (в %) рождения в этой семье детей-правшей, страдающих отсутствием потовых желез?

9. Известно, что у бабочек гетерогаметным полом являются самки. Определите, какой процент длинноусых пятнистых особей среди самок следует ожидать от скрещивания дигетерозиготного длинноусого самца однотонной окраски с короткоусой пятнистой самкой, если признак наличия пятен сцеплен с X-хромосомой.

10. Женщина – правша с четвертой группой крови и нормальным цветовым зрением вышла замуж за мужчину – правшу с первой группой крови, страдающего дальтонизмом. У них родилась дочь – левша с дальтонизмом и второй группой крови. Какова вероятность того, что следующий ребенок в этой семье будет левшей с нормальным цветовым зрением и третьей группой крови? (Праворукость – домinantный аутосомный признак, дальтонизм наследуется X–сцепленно – рецессивно)

11. У родителей со второй группой крови родился сын с первой группой крови и гемофилия. Оба родители не страдают этой болезнью. Определите вероятность рождения второго ребенка здоровым и его возможные группы крови. Гемофилия наследуется как рецессивный, сцепленный с X-хромосомой признак.

12. У канареек зеленая окраска оперения доминирует над коричневой и определяется геном, локализованным в X – хромосоме, а короткий клюв
доминирует над длинным и определяется геном, локализованным в аутосоме. При скрещивании самца зеленой окраски с коротким клювом и короткоклювой коричневой самки получено потомство с различным сочетанием всех фенотипических признаков. Сколько процентов потомков будет иметь коричневое оперение и короткий клюв?

13. Женщина-правша с карими глазами и нормальной свертываемостью крови вышла замуж за голубоглазого мужчину-правшу, страдающего гемофилией. У них родились голубоглазая дочь-левша с гемофилией. Какова вероятность того, что следующий ребенок в этой семье будет кареглазым левшей, страдающим гемофилией?

14. У кукурузы гены окрашенного семени и гладко эндосперма доминируют над генами неокрашенного семени и сморщенного эндосперма. Доминантные гомозиготы были скрещены с рецессивными гомозиготами. При дальнейшем анализирующем скрещивании были получены: 380 растений с окрашенным семенем и гладким эндоспермом, 396 – с неокрашенным семенем и сморщенным эндоспермом, 14 – с окрашенным семенем и сморщенным эндоспермом, 10 – с неокрашенным семенем и гладким эндоспермом. Вычислить расстояние между генами окраски семян и характера эндосперма.

15. У томатов высокий рост стебля доминирует над карликовым, а шаровидная форма плода над грушевидной, гены высоты стебля и формы плода сцеплены и находятся друг от друга на расстоянии 20 морганид. Скрещено гетерозиготное по обоим признакам растение с карликовым, имеющим грушевидные плоды. Сколько высоких растений с грушевидными плодами будет среди потомков?
16. У человека катаракта и полидактилия определяются домinantными аутосомными генами, находящимися на расстоянии 32 морганид друг от друга. Один из супругов гетерозиготен по обоим признакам. При этом катаракту он унаследовал от одного родителя, а полидактилию – от другого. Второй супруг имеет нормальный прозрачный хрусталик и нормальную пятипалую кисть. Какова вероятность (в процентах) рождения в семье ребенка, имеющего нормальный прозрачный хрусталик и нормальную пятипалую кисть?

17. Резус-положительность и эллиптоцитоз определяются домinantными аутосомными генами, находящимися на расстоянии 3 морганид друг от друга. Один из супругов гетерозиготен по обоим признакам, при этом резус-положительность он унаследовал от одного родителя, эллиптоцитоз – от другого. Второй супруг резус-отрицателен и имеет нормальные эритроциты. Какова вероятность (в %) рождения в этой семье ребенка, имеющего положительный резус-фактор и эритроциты нормальной формы?

18. Гены a, b, c, d, e и f расположены в одной хромосоме. Определить последовательность этих генов, если известны частоты рекомбинаций между ними: (a – c) 2,5 %; (f – d) 8,5 %; (b – d) 4,5%; (d – e) 4%; (c – e) 9,5%; (a – b) 20,5%; (f – a) 7,5%.

19. Кариотип шимпанзе - 48 хромосом. Сколько групп сцепления в соматических клетках самца шимпанзе?

20. Если расстояние между генами в группе сцепления составляет 24,6 морганид, то чему равна вероятность сцепленного наследования?
21. Расстояние между генами дальтонизма и гемофилии в Х-хромосоме 9,8%. Женщина, мать которой страдает дальтонизмом, а отец гемофилией, вступает в брак со здоровым мужчиной. Определите вероятность рождения в этой семье детей с обеими аномалиями одновременно.

22. У человека ослабленное сумеречное зрение доминирует над нормальным зрением, а наличие потовых желез – над их отсутствием. Оба признака локализованы в X-хромосоме и находятся на расстоянии 14,4 морганид. Женщина, отец которой страдал ослабленным сумеречным зрением и имел потовые железы, а мать обладала нормальным сумеречным зрением, но не имела потовых желез, выходит замуж за мужчину с нормальным зрением без потовых желез. Определите вероятность (в%) рождения в этой семье детей с ослабленным сумеречным зрением и без потовых желез.

23. У василька признак рассеченности листьев доминирует над цельными листьями, а синяя окраска цветков - над розовой. Гены расположены в одной хромосоме. При анализирующем скрещивании получено потомство четырех фенотипических классов:

1) 358 растений с рассеченными листьями и синими цветками;
2) 342 растения с цельными листьями и розовыми цветками;
3) 153 растения с рассеченными листьями и розовыми цветками;
4) 147 растений с цельными листьями и синими цветками

Рассчитайте, сколько процентов растений будут иметь рассеченные листья и синие цветки от скрещивания особей первого и четвертого фенотипических классов между собой, учитывая, что признаки наследуются так же, как при анализирующем скрещивании.

5. Задачи по теме «Изменчивость живых организмов»
1. Гибрид тритикале был получен путем скрещивания гексаплоидной пшеницы (6 n) с диплоидной ржию (2 n) с дальнейшим удвоением числа хромосом. Определите количество хромосом в генотипе тритикале, если у пшеницы 2 n = 14, у ржи 2 n = 14.

2. Для одной из сельскохозяйственных культур (n =12) было замечено улучшение качественных признаков вследствие спонтанной мутации – трисомии по пятой хромосоме. Для стабилизации данной мутации в новом сорте число хромосом было удвоено. Определите количество хромосом в клетках потомка, полученного при скрещивании растений нового сорта с исходным.

3. У плодовой мушки дрозофилы существует доминантная мутация Bar, приводящая к развитию фенотипа «полосковидные глаза». Данная мутация – результат спонтанной дупликации гена B. У дрозофилдикого типа (не мутантных) – по одной копии гена B в обеих гомологичных хромосомах. В эксперименте скрестили мух лабораторной линии Bar, у которых в обеих гомологичных хромосомах ген B был удвоен, с мухами дикого типа. Определите количество копий гена B в генотипе потомков от этого скрещивания.

4. Культурную сливу получили путем межвидовой гибридизации терна с альной с последующим удвоением числа хромосом. В генотипе культурной сливы 48 хромосом (2 n). Определите, сколько хромосом содержится в гаплоидном наборе терна, если известно, что гаплоидный набор альки включает 8 хромосом.

5. Гибрид «рафанобрассика» был получен путем межвидовой гибридизации редьки (n =9) и капусты (n = 9) с последующим
удвоением числа хромосом. Определите количество хромосом редьки в клетках гибрида.

6. Для одной из сельскохозяйственных культур (2n = 24) было замечено улучшение качественных признаков вследствие спонтанной мутации — трисомии по пятой хромосоме. Для стабилизации данной мутации в новом сорте число хромосом было удвоено. Определите количество пятых хромосом в клетках потомка, полученного при скрещивании растений нового сорта с исходным.

6. Задачи по теме «Генетика человека»

1. Здоровые муж и жена (двоюродные сибсы) имеют большую атаксией Фридрейха (прогрессирующее расстройство координации движений) дочь. Мать мужа и отец жены, родные сибсы, здоровы. Общий дядя супругов здоров. Их общая бабка была здорова, а дед страдал атаксией. Все родственники со стороны отца мужа, в том числе 2 дяди, двоюродная сестра, дед и бабка здоровы. Все родственники со стороны матери жены здоровы. Составьте родословную. Определите тип наследования, генотипы лиц родословной и вероятность рождения больного ребёнка в семье, если больная дочь выйдет замуж за здорового юношу, отец которого болел атаксией Фридрейха.

2. Пробанд — здоровая женщина. Её сестра здорова, а два брата страдают дальтонизмом. Мать и отец пробанда здоровы. Четыре сестры матери пробанда здорова, их мужья здоровы. О двоюродных сибсах со стороны матери пробанда известно: в одной семье один больной брат, две сестры и брат здоровы; в двух других семьях — по одному больному брату и по одной здоровой сестре; в 4-й семье — одна здоровая сестра. Бабушка пробанда со стороны матери здорова, дед
страдал дальтонизмом. Со стороны отца пробанда больных дальтонизмом не отмечено. Составьте родословную. Определите тип наследования этой патологии, по возможности, генотипы лиц родословной и вероятность рождения у пробанда больных дальтонизмом детей при условии, что она выйдет замуж за здорового мужчину.

3. У человека описана аномалия — наличие перепонки между пальцами ног. От брака между женщиной с нормальными пальцами ног и мужчиной, имевшим перепонку, родилось трое детей: дочь была нормальной, а сыновья обладали этой аномалией. Один из сыновей в браке с нормальной женщиной имел 6 дочерей с нормальными пальцами и 4 сына с аномалией. Составьте родословную и определите тип наследования и вероятность рождения ребёнка с аномалией, если внук женится на женщине с нормальными пальцами ног.

4. Пробанд — больной миопатией Дюшена (атрофия скелетной мускулатуры) мальчик. По данным собранного у родителей анамнеза, сами родители две сестры пробанда здоровья. По отцовской линии два дяди, тётя, дед и бабка пробанда — здоровы, две двоюродные сестры от дяди и двоюродный брат от тетки пробанда — здоровы. По линии матери пробанда один из двух дядей (старший) болел миопатией. Второй дядя (здоровый) имел двух здоровых сыновей и здоровую дочь. Тётя пробанда имела больного сына. Дед и бабка — здоровы. Составьте родословную. Определите тип наследования, генотипы лиц родословной, вероятность рождения больного ребёнка в семье, если пробанд женится на здоровой женщине, отец которой болен миопатией Дюшена.
5. В семье у здоровых родителей родился доношенный ребёнок с массой тела 2400г. При обращении в медико-генетическую консультацию у ребёнка установили микроцефалию, низкий скошенный лоб, суженные глазные щели, микрофтальмия, помутнение роговицы, запавшее переносье, широкое основание носа, деформированные ушные раковины, двухсторонние расщелины верхней губы и нёба, синдактилию пальцев ног, короткую шею, четырёхпальцевую борозду на ладонях, дефекты межжелудочковой перегородки сердца, задержку психического развития. Наличие какого заболевания можно предположить у ребенка?

6. У родителей (жена – 47 лет, муж – 49 лет) родился доношенный ребёнок. При обращении в медико-генетическую консультацию у ребёнка обнаружили плоское лицо, низкий скошенный лоб, большую голову, косой разрез глаз, светлые пятна на радужке, толстые губы, толстый выступающий изо рта язык, деформированные низко расположенные ушные раковины, высокое нёбо, неправильный рост зубов, дефект межпредсердной перегородки, на ладонях четырёхпальцевую борозду, главный ладонный угол 69, радиальные линии на 4-м и 5-м пальцах руку задержку умственного развития. Наличие какого заболевания можно предположить у ребенка?

7. В молодой семье родился ребёнок, плач которого напоминает кошачье мяуанье. При обращении в медико-генетическую консультацию у ребёнка обнаружили лунообразное лицо, мышечную гипотонию, микроцефалию, антимоноглоэдный разрез глаз, косоглазие, низко расположенные деформированные
ушные раковины, задержку психического развития. Наличие какого заболевания можно предположить у ребенка?

8. Пробанд – гемофилик. Его здоровый брат и здоровая сестра обратились к врачу по вопросу вероятности рождения в их семьях больных гемофилией детей, при условии, что их супруги не имеют генов гемофилии. Дифференциальная диагностика формы гемофилии пробанда показала наследуемую резцессивно, сцепленную с X-хромосомой гемофилию A. Анализ родословной подтвердил сцепленное с полом наследование в данной семье. Пенетрантность гена гемофилии у гемизигот полная. Может ли здоровый брат пробанда передать своему ребенку ген гемофилии? Какова вероятность того, что здоровая сестра пробанда передаст своему ребенку ген гемофилии?

9. Сын американского банкира Твистера страдал одновременно тремя болезнями: гемофилией, дальтонизмом и полным отсутствием зубов. Эти болезни обусловлены генами, находящимися в X-хромосоме. Твистер младший много лет прожил вдали от родителей в Париже, где и умер в 1944 году. После его смерти к Твистеру старшему явилась француженка с 15–летним мальчиком, у которого тоже сочетались гемофилия, дальтонизм и отсутствие зубов. Женщина сообщила, что этот мальчик – сын покойного Твистера младшего и его законный наследник, но документы, подтверждающие это, утрачены во время оккупации Франции. Несмотря на отсутствие документов, Твистер признал мальчика своим внуком. Семейный врач убедил его, что такое совпадение редкого сочетания трёх наследственных болезней доказывает, что этот мальчик – его внук. Согласны ли вы с мнением доктора?
10. Мужчина и его сын больны гемофилией. Жена мужчины беременна. Опаясь, что у неё родится сын гемофилик, она обратилась в медико-генетическую консультацию с целью определить пол плода и прервать беременность, если выяснится, что плод мужского пола. Врачи, побеседовав с нею, рекомендовали сразу прервать беременность, не проводя амниоцентеза. Вернё ли эта рекомендация?

7. Задачи по экологии

1. Популяция пчел рода антофора питаются нектаром луговых растений. Установлено, что они используют лишь 1% от общего нектара данного луга. Какое количество этих одиночных пчел обитает на лугу, если известно, что для нормальной жизнедеятельности каждой из них необходимо примерно 10 г нектара в год, а всего на лугу образуется около 150 кг нектара.

2. Биомасса рыбы в озере – постоянная величина, составляющая 54,75 т. Одна хищная птица съедает за сутки 1,5 кг рыбы. Какое количество рыбоядных птиц может выжить у озера в течение года (365 дней)?

3. Орешниковая соня в среднем съедает около 200 г растительной пищи в сутки (как правило, это семена и плоды деревьев и кустарников). Активный период ее жизнедеятельности длится с начала апреля по конец октября (в среднем 210 суток). Какое максимальное количество этих редких зверьков может выжить в широколиственном лесу с фитомассой 1400 т, если известно, что количество доступных плодов здесь составляет примерно 0,2% от общей фитомассы?

4. В еловом лесу на протяжении многих лет обитает популяция клеста – еловика, состоящая из 45 пар птиц. Определите общую массу елей в данном сообществе, если за сезон одна птица съедает около 2 кг семян ели. Причем
известно, что масса семян составляет 0,001% массы дерева. Предполагается также, что клесты в данном сообществе питаются семенами ели, съедая их практически полностью.

5. Известно, что белый амур – это растительноядная рыба, которая в течение одного сезона съедает до 12 кг фитомассы водоема. Работники рыбного хозяйства решили ввести в культуру данный вид рыбы. Какую площадь должен иметь искусственный пруд, если туда планируется запустить 10000 особей амура, а средняя продуктивность фитомассы пруда в данной климатической зоне составляет 15кг/м²/год? Предполагается, что глубина пруда практически везде одинаковая, а кроме белого амура растительной пищей в данном водоеме никто не питается.

6. Плотность популяции диких гусей составляет 124 особи/га. За период размножения (один раз в году) из одной кладки яиц в среднем выживают 1,2 птенца. В популяции равное число самцов и самок. Смертность гусей постоянна, в среднем за год погибает 19% взрослых особей. Определите, какой будет плотность популяции гусей (особей/га) через год.

7. Плотность популяции воробья домового составляет 164 особи/га. За период размножения (один раз в году) из одной кладки яиц в среднем выживает 1,6 птенца. В популяции равное число самцов и самок. Смертность воробьев постоянна, в среднем за год погибает 28% взрослых особей. Определите, какой будет плотность популяции воробьев (особей/га) через год.

8. Для определения численности популяции тритонов на площади 100 квадратных метров были отловлены 40 животных, помечены и отпущены. На следующий день на этом участке поймали 40 тритонов, из них 20 оказались помеченными. Определите плотность популяции тритонов.
9. Известно, что в аквариуме емкостью 1000 л в течение года образовалось 10 кг чистой первичной продукции. Каждый грамм этой биомассы содержит 100 ккал энергии. Рассчитайте, каким запасом энергии будут обладать консументы третьего порядка данного аквариума. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана.

10. Рассчитайте первичную продукцию аквариума, где энергия всех консументов второго порядка составляет 1000 ккал, если известно, что один кг этой продукции содержит запас энергии 100 ккал. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана.

11. Чистая первичная продукция всех продуцентов в экосистеме составляет 5000 кг. Один кг фитомассы содержит 800 ккал энергии. Рассчитайте максимальное количество хищников первого порядка, которые могут прокормиться в данной экосистеме, если их средняя масса 4 кг, а в 100 г их тела содержится 500 ккал энергии. Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана.

12. Определите, какое максимальное количество паразитов может прокормиться в организме хозяина, если масса одного паразита -10г и в 1г его тела заключено 200 ккал энергии. Хозяин – травоядное животное со средней массой тела 40 кг, в 1 кг которого содержится 2000 ккал энергии. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).
13. Известно, что в лесу хищники второго порядка имеют в среднем массу тела, равную 2 кг, а в 100 г их тела содержится 300 ккал энергии. Рассчитайте, какое количество данных хищников может выжить в лесу, на поверхность которого падает 6 млрд ккал энергии, а КПД фотосинтеза в данной экосистеме составляет 1%? (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

14. Установлено, что 100 г тела хищной птицы (консумент третьего порядка) содержат 300 ккал энергии, а КПД фотосинтеза в лесу составляет 2%. Какое максимальное количество этих птиц со средней массой 0,5 кг сможет прокормиться в сообществе, на поверхность которого поступает 4,5 млрд ккал солнечной энергии. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

15. На небольшом острове существует тесная пищевая связь между различными организмами пяти трофических уровней. Травоядные животные сообщества содержат примерно десять раз больше энергии, чем хищники первого порядка. Единственным источником энергии на острове является солнечный свет. Его общая энергия за год составляет примерно 400 млн кДж, а КПД фотосинтеза в данном сообществе примерно 1,5%. Определите, какое количество паразитов может быть у хищников высшего порядка данного сообщества, если масса каждого из паразитов составляет 0,2 г, а на 1 кг их массы приходится 200000 кДж энергии? (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

16. Определите количество берез в роще, если масса всех консументов третьего порядка в ней составила 3 тонны, а в 1 кг их биомассы содержится 100 кДж энергии. Известно также, что средняя масса одного дерева составляет 300 кг, а
при сжигании 1 кг древесины выделяется 100 кДж тепла. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

17. Одна мышь съедает 1 кг растительной пищи. Рыси могут съесть 2 % популяции мышей (в среднем по 800 грызунов за год каждая). Какое количество мышей сможет выжить в сообществе с фитомассой 8000 т, если мыши используют в пищу 1% фитомассы и являются основной пищей для рысей?

18. Рассчитайте, сколько кг зерна нужно заготовить хозяйку для откорма десяти 100 – граммовых цыплят до 2 кг каждого, если в 100 г зерна содержится 100 ккал энергии, а в 100 г биомассы цыплёнка ~ 200 ккал. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

19. Один заяц за год съедает около 500 кг растительной пищи. Беркуты могут съесть до 10% популяции зайцев (в среднем каждая особь съедает по 200 зайцев в год). Какое максимальное количество беркутов сможет выжить в сообществе с фитомассой 500000 тонн, где зайцы используют в пищу 2% фитомассы и являются основной пищей для беркутов?

20. В сосновом лесу общий запас древесины составляет 500 тонн. Одна личинка соснового усача потребляет 50 г древесины. Примерно в 10% личинок данного жука развиваются наездники – эфиалты (в одной личинке развивается один наездник). Какое максимальное количество эфиалтов может сформироваться в сосновом лесу, если усачам для питания доступно только 0,01% древесины сосны?
21. Продуценты биогеоценоза охотничьего угодья накапливают 15000000 кДж энергии. На какое количество волков можно выдать лицензию охотнику, если биомасса популяции волков в охотничьем угодье составляет одну пятую часть биомассы всех консументов второго порядка и половина популяции должна сохраниться? В 1 кг консументов второго порядка запасается 50 кДж энергии. Масса одного волка равна 50 кг. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

22. Условная цепь питания состоит из следующих звеньев, перечисленных в случайном порядке: сокол, личинки клеверного долгоносика, клевер, воробей. Суммарный прирост биомассы соколов за год составил 10 кг. Рассчитайте чистую первичную продукцию (т), если известно, что при переходе с одного трофического уровня на другой теряется 95% энергии, а клеверный долгоносик уничтожил 25% биомассы клевера. В 1 кг биомассы клевера и сокола содержится по 1 кДж энергии.

23. Человек массой 70 кг в течение суток питается крольчатиной и потребляет с ней 80 ккал энергии на 1 кг массы тела. Пищей кроликам служит только морковь, содержание сухого вещества в которой составляет 20%. Сухое вещество на 70% состоит из углеводов. При окислении 1 г углеводов в организме кролика высвобождается 4 ккал энергии. Используя правило Линдемана, рассчитайте, сколько килограммов сырой моркови надо скормить кроликам, чтобы получить требуемое количество крольчатины для питания человека в течение суток.

24. Белый амур питается растительной пищей. За период выращивания он потребил с пищей 100000 кДж энергии. Доля неусвоенной пищи составила 50%. На прирост было затрачено 20% усвоенной энергии, остальное - на дыхание. Рассчитайте количество энергии (кДж), затраченной на дыхание.
25. Масса самки одного из видов летучих мышей, питающихся насекомыми, не превышает 5 г, а каждого из двух ее детенышей 1 г. Какую биомассу насекомых надо употребить самке, чтобы кормить детенышей молоком в течение месяца, пока масса каждого из них достигнет 4,5 г? (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

26. Рассмотрите пирамиду энергии экосистемы озера.

Окунь 22 млрд кДж
малек карпа
растения (КПД фотосинтеза 2 %)

Определите биомассу продуцентов данной экосистемы (в тоннах), если известно, что 1 кг зеленой массы поглощает 5 млн кДж солнечной энергии. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

27. В свежевырытый пруд было запущено 20 кг малька плотвы и 2 кг малька окуня. Какое минимальное количество комбикорма (кг), который потреблял только малек плотвы, использовал хозяин пруда, если в конце сезона он выловил 30 кг плотвы и 7 кг окуня? В 100 г комбикорма запасено 300 ккал энергии, а в 100 г биомассы консументов – 100 ккал. (Процесс трансформации энергии с одного трофического уровня на другой протекает в соответствии с правилом Линдемана).

28. Млекопитающее массой 20 г съело 25 г семян. 70% пищи не усвоилось. Какая часть энергии потребленной пищи израсходуется на дыхание, если калорийность семян составляет 1500 кДж/кг, тканей животного – 4000 кДж/кг. Прирост массы животного – 1% от исходной?
29. Какое количество травы с 1 га в год необходимо для того, чтобы процветала популяция травяной лягушки, если в перерасчете на сухое вещество лягушки получают с третьего трофического уровня 210,7 кКал/га в год, со второго - 599,6 кКал/га в год при калорийности сухого вещества 5 кКал/г и содержании воды в зеленой массе 75 %. (Расчеты ведутся по сухому веществу, ответ дается в перерасчете на сочную траву).

30. В экосистеме обитают черные дрозды, дождевые черви, растения, микроорганизмы. Дрозды выделяют 15% популяции червей и 3% фитомассы, получая при этом 1947 кДж энергии. Дождевые черви питаются детритом. Энергия, заключенная в детрите, составляет 2,6 миллионов кДж, суммарная солнечная энергия - 54 миллиона кДж. Какой процент фиксированной энергии продуценты затрачивают на процессы жизнедеятельности, если известно, что КПД фотосинтеза составляет 2%, передача энергии с одного трофического уровня на другой в детритной цепи составляет 5%, в пастбищной цепи – 10%.

8. Задачи по теме «Закон Харди – Вайнберга»

1. В популяции, подчиняющейся закону Харди – Вайнберга, 64% людей способны сворачивать язык трубочной (домinantный признак). Вычислите частоту встречаемости (%) домinantного генотипа.

2. В популяции лисиц на 1000 особей встречается 10 белых, остальные - рыжие. Определите процентное соотношение рыжих гомозиготных и рыжих гетерозиготных лисиц в данной популяции.

3. В большой по численности популяции людей, подчиняющейся закону Харди – Вайнберга, на 4800 человек приходится 12 альбиносов (аутосомно – рецессивный признак).
Вычислите процент гетерозигот по гену альбинизма в данной популяции.

4. В популяции, подчиняющейся закону Харди – Вайнберга, насчитывается 5000 личинок щелкопрядов, из которых 36% сформировали кокон с длиной нити около 1000 м (домinantный признак). Сколько среди личинок было гетерозигот?

5. Отсутствие хвоста у грызунов наследуется как рецессивный признак. Гетерозиготы имеют укороченный хвост по сравнению с доминантнымигомозиготами. Частота доминантного аллеля в популяции составляет 80 %. Определите долго (в %) бесхвостых грызунов, учитывая, что в данной популяции сохраняется равновесие Харди - Вайнберга.

6. Альбинизм у ржи наследуется как аутосомный рецессивный признак. На обследованном участке произрастало 100000 растений. Среди них было 250 альбиносов. Определите процент встречаемости гетерозиготных особей по данному признаку в этой популяции, подчиняющейся закону Харди – Вайнберга.

7. Популяция находится в состоянии равновесия, частоты встречаемости различных аллелей групп крови соответствуют следующим значениям: A – 0,2; B – 0,4; O – 0,4. С какой частотой в данной популяции будут встречаться люди с группами крови A, B, AB и O?