Геаграфія 23

УДК 911.2:556.3(476)

В.Н. Киселев,

доктор географических наук,

профессор кафедры физической географии БГПУ;

Е.В. Матюшевская,

кандидат географических наук, доцент кафедры общего землеведения и гидрометеорологии БГУ;

А.Е. Яротов,

кандидат географических наук, старший преподаватель кафедры физической географии мира и образовательных технологий БГУ;

П.А. Митрахович,

кандидат биологических наук, доцент кафедры физической географии мира и образовательных технологий БГУ

ЦИКЛИЧНАЯ ИЗМЕНЧИВОСТЬ РАДИАЛЬНОГО ПРИРОСТА СОСНЫ ПРИ ЕСТЕСТВЕННОМ РЕЖИМЕ ГРУНТОВЫХ ВОД В БЕЛОРУССКОМ ПОЛЕСЬЕ

ведение. До крупномасштабной осушительной мелиорации ландшафты Белорусского Полесья находились на капиллярно-гидроморфной стадии развития. После осушительной мелиорации песчаные гидроморфные почвы оказались с измененным водным режимом в результате понижения грунтовых вод и, следовательно, зоны увлажнения при их капиллярном поднятии. Современные лесные сообщества после смены поколений образующих их древесных пород развиваются уже в новых условиях увлажнения, ведущее участие в котором принадлежит атмосферным осадкам.

Возникает вопрос: как бы они развивались, если бы сохранился их естественный, не нарушенный осушительной мелиорацией, водный режим? Ответ на него получить, исследуя динамику радиального прироста основной лесообразующей породы в Полесье - сосны обыкновенной (Pinus sylvestris L.) в местонахождениях, которые не испытали влияния водно-земельной мелиорации за последние два столетия, начиная с осушения болот Западной экспедицией И.И. Жилинского в 1873–1898 гг. «Сплошное осушение» в последней четверти XIX в. продолжилось практически повсеместным вовлечением в интенсивное сельскохозяйственное производство болот и заболоченных земель во второй половине XX в.

Исследование лесных экосистем на территориях, не подвергшихся интенсивному антропогенному воздействию, позволяет получить информацию о естественном развитии природной среды на Полесье без крупномасштабной осушительной мелиорации. Сложность подобной задачи заключается в том, что сейчас невозможно представить, как развивалась бы природа этого региона в естественной динамике.

Сравнение современных физико-географических реалий с реконструированными способствовало бы, по всей видимости, более осмотрительному использованию его природных, в первую очередь, лесных и земельных ресурсов. Для приближения к решению этой задачи необходимо получить исходный материал, позволяющий выполнить эту реконструкцию. Изменение линейного (по диаметру) прироста основной лесообразующей породы на Полесье - сосны, являющегося индикатором ежегодных условий ее формирования, представляется необходимым.

Кроме поступательной изменчивости климатических факторов в нем могут содержаться сигналы о цикличности природных

процессов. Здесь важно получить надежные древесно-кольцевые хронологии, как можно более продолжительные ПО времени. Сплошные рубки в XIX-XX вв. не оставили, за редким исключением, великовозрастных насаждений, необходимых для этой цели. Массовый дендрохронологический материал продолжительностью до 200 лет и более был получен именно на территориях, где заготовка древесины не представляла практического верховых болотах интереса – на [1] и «болотном городке» [2].

Материалы и методика исследования. Естественный ход радиального прироста сосны был исследован в ее насаждении, занимающем изолированный, так называемый «остров» (слабо выраженное овальное повышение поперечником до 150 м) среди верхового болота «Круковское» на междуречье Березины и Птичи в западной части Светлогорского лесхоза.

Тип леса – сосняк черничный с участием в зависимости от микрорельефа папоротникаорляка (на относительных незначительных повышениях) и багульника болотного (по микропонижениям и по окраине «острова»). Будучи удаленным от лесных массивов и расположенным среди болота, древостой не был подвержен сплошным и санитарным и рубкам Насаждение рубкам ухода. возникло и развивалось при естественном, не измененном осушением болота, увлажнении. Майский уровень грунтовых вод в засушливый год начала исследования (2011 г.) находился у поверхности (в микропонижениях с участием багульника) или на глубине 35 см (на микроповышениях с орляком).

К осени грунтовые воды понизились соответственно на глубину 60 и 95 см.

Почва — дерново-подзолисто-глеевая со следующими горизонтами: A_0 (0—12 см, подстилка с дерниной), A_1A_2 (до глубины 25—30 см, песок рыхлый, мелкозернистый, темно-серый до черного с белесой присыпкой), A_2 (до глубины 32—48 см, песок рыхлый, мелкозернистый серовато-белесый), B_{1g} (до глубины 120 см, песок мелкозернистый, рыхлый, серовато-буроватый с сизоватыми и охристыми пятнами, оплывает).

Образцы древесины (керны) сосны отобраны в январе 2012 г. возрастным буравом на высоте 1,3 м со всех стволов, не имеющих физических повреждений и дефектов роста. Сведения о тестированных крупномерных деревьях, имеющих сравнительно одинаковый диаметр ствола, приведены в таблице 1. Статистическая обработка данных выполнена с применением пакета прикладных программ SPSS.

Таблица 1 – Сведения о тестированных деревьях

•	Воз- раст, лет	Количество деревьев	Диаметр, см	Высота,	Коэффициент корреляции 1 порядка
	220	9	40–54	26–32	0,86
	130	7	42–50	26–32	0,88
	110	9	36–50	22–28	0,75

Двухвековой ход изменчивости фактического (в мм) радиального прироста представлен на рисунке 1, индексового (%), определенного с применением пятилетнего скользящего сглаживания – на рисунке 2.

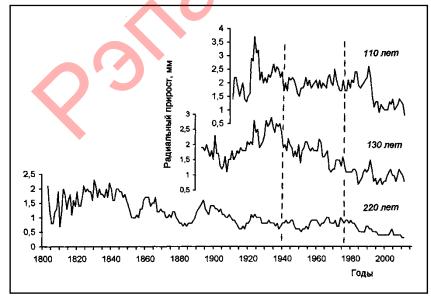


Рисунок 1 — Двухвековой ход изменчивости фактического радиального прироста возрастных групп сосны на «острове» среди верхового болота. Вертикальными штриховыми линиями показаны 1940 и 1976 гг.

Геаграфія 25

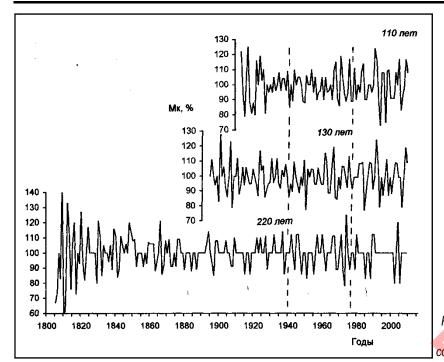


Рисунок 2 – Двухвековой ход изменчивости индексового прироста возрастных групп сосны на «острове» среди верхового болота

Дендрохронологический и дендроклиматический анализ изменчивости радиального прироста учитывал существование (за историю инструментальных наблюдений с 1880-х гг.) двух климатических эпох: влажной и неустойчиво влажной (до и после 1940 г.) [3], а также резкое сокращение притока прямой солнечной радиации после 1976 г. [1].

Синхронность хода изменчивости радиального прироста была свойственна всем трем возрастным группам деревьев. Межсериальный коэффициент корреляции для 220- и 130-летних поколений составил 0,54, для 130- и 110-летних — 0,63, наибольшее значение (0,70) он имел для 220-и 110-летних поколений.

Обсуждение результатов. Результаты анализа локальной древесно-кольцевой хронологии 220-летнего поколения сосен (рисунок 1) указывают на цикличный характер изменчивости ширины годичных колец. В его двухвековом ходе выделяется 30—35-летний цикл, ограниченный минимумами радиального прироста в 1852, 1882, 1917, 1952 и 1985 гг. Наибольшая стволовая продуктивность сосны была до 1852 г., достигнув максимальных значений в 1825—1845 гг. С возрастом насаждения высота цикла и амплитуда изменчивости радиального прироста уменьшались, его потенциал (максимальная ширина годичного кольца) сокращался (таблица 2).

Начало XIX в. ознаменовалось крайне неустойчивой погодно-климатической обстановкой: небывалыми летними засухами, наводнениями и необычайно суровыми зимами.

Таблица 2 – Статистическая характеристика годичных колец у древесно-кольцевых хронологий сосны на «острове» в верховом болоте

Годы	Кч	Радиальн	σ индексо-						
		средний	макси- мальный	σ	вого при- роста, %				
	Возраст 220 лет								
До 1852	0,32	1,6	6,1	0,38	18,5				
1853–1882	0,18	1,2	5,8	0,28	7,8				
1883–1917	0,17	1,1	3,2	0,22	6,5				
1918–1952	0,19	0,8	3,2	0,13	7,8				
1953–1985	0,19	0,8	2,2	0,13	9,6				
1985–2011	0,20	0,5	1,5	0,10	9,0				
		т 130 лет							
1890–1917	0,15	1,7	5,5	0,26	11,3				
1918–1952	0,29	2,2	4,1	0,39	8,7				
1953–1985	0,15	1,5	3,9	0,40	9,7				
1985–2011	0,25	1,0	2,3	0,19	11,3				
	Возраст 110 лет								
1918–1952	0,25	2,2	6,5	0,52	9,5				
1953–1985	0,21	2,0	3,5	0,21	9,6				
1985–2011	0,24	1,4	3,0	0,47	13,1				

После засухи 1808 г. и летней жары 1812 г., сопровождавшимися на Полесье практически повсеместными лесными пожарами, наступили необычайно морозные зимы. К наиболее значительным относится засуха 1839 г. Угнетение сосны на низком «острове» среди Круковского болота началось после катастрофического наводнения 1845 г.

Этот период ознаменовался несколькими значительными событиями геологического порядка. Среди них: извержение вулкана Майон в 1814 г. с мощными выбросами пепла, самое крупное за историческое время извержение со взрывом Тамборы в 1815—1816 гг., извержение с выбросом рыхлых масс Галунггунга в 1822 г., крупнейшее со взрывом в новейшей исторической эпохе Касигуины в 1835 г.

Максимальный линейный прирост сосны в 1825—1845 гг. был свойственен не только ее насаждению на исследованном «острове», но и на верховых болотах Полесья: «Красная корчма» (Светлогорский лесхоз), Выгонощенском болотном массиве (Ганцевичский лесхоз), в кв. № 205 (Брестский лесхоз); в средней полосе Беларуси: «Дубовый Лог» (Червенский лесхоз), «Прошицкое» (Крупский лесхоз) в Налибокской пуще; в Поозерье: болото «Мох» (Дисненский лесхоз) [1].

Сосняк мшистый на кварцевых песках (Светлогорский лесхоз) и сохранившиеся 190-летние сосны в парке имени 50-летия Октября (Минск) имели высокие показатели радиального прироста именно в эти годы. Высокая стволовая продуктивность этой древесной породы в начале XIX в. подтверждена и исторической дендроклиматологией [1]. Можно говорить об общей тенденции к высокой стволовой продуктивности сосны в начале XIX в. независимо от ее местонахождения.

Сосна, как известно, обладает широким диапазоном толерантности к температурному фактору. В переувлажненных эдафотопах ее состояние и продуктивность определяется изменениями в уровневом режиме приповерхностных грунтовых вод, который зависит от атмосферных осадков.

Дендроклиматические исследования с привлечением радиального прироста 245-летних сосен на валу расположенного рядом «болотного городка» показали, что ширина их годичных колец зависит от рассеянной солнечной радиации. Как известно, светолюбивая сосна нуждается в рассеянном освещении и плохо выносит попадание прямых солнечных лучей.

По всей видимости, загрязнение атмосферы аэрозолем пирогенного и вулканического происхождения определили текущий радиальный прирост сосны в контрастных погодно-климатических условиях до 1845 г.

Следующая депрессия радиального прироста наступила после дождливых 1876—1879 гг., когда болота были переполнены водой. Сенокосы и яровые были затоплены [4]. Очередной цикл изменчивости радиального прироста закончился в 1917 г. после предшествующего сырого (828 мм осадков) года.

Нисходящая ветвь этого цикла принадлежит самому влажному отрезку времени в 1900—1917 гг., когда в среднем за год выпадало 772 мм осадков. Депрессия прироста после окончания этого цикла продолжалась четыре года, включая 1918 г. с самыми холодными за всю историю инструментальных наблюдений месяцами активного роста (12,1 °C).

С возрастом древостоя дисперсия радиального прироста в 30–35-летнем цикле уменьшалась: до 1852 г. стандартное отклонение σ = 0,38 мм, в 1853–1882 гг. σ = 0,29 мм, в 1883–1917 гг. σ = 0,27 мм, в 1918–1953 гг. σ = 0,15 мм, в 1954–1985 гг. σ = 0,12 мм и после 1985 г. σ = 0,11 мм.

Амплитуда следующего цикла в 1918—1952 гг. сократилась, поскольку, если судить по ширине годичных колец (> 1,0 мм), сосна уже находилась в угнетенном состоянии. Однако его окончание в 1953 г. связано с аномально высоким выпадением осадков (905 мм, за вегетационный период — 527 мм). Вершина этого цикла оказалась вогнутой: в 1938 г. выпало 809 мм осадков (за вегетационный период — 470 мм).

Окончание предпоследнего цикла в 1985 г. последовало за извержением вулкана Святой Елены (1980 г.) и Эль-Чичона (1982 г.) и вызвано рекордным выпадением осадков (246 мм) в месяцы активного роста сосны за всю историю инструментальных наблюдений на метеостанции Василевичи.

Таким образом, природа 30—35-летней цикличности в нарастании стволовой массы 220-летнего поколения сосны в эдафотопе с дерново-подзолисто-глеевой почвой и приповерхностным залеганием грунтовых вод, не осложненным осушительной мелиорацией, имеет погодно-климатическую причинность и не является внутренним свойством роста и развития сосны.

В отличие от 220-летнего поколения сосны, 30—35-летний цикл изменчивости радиального прироста у 130- и 110-летних групп не выражен. Это, возможно, связано с тем, что их рост и развитие происходили в сравнительно однородных климатических условиях влажной и неустойчиво влажной эпох (до и после 1940 г.).

У 130-летней группы деревьев радиальный прирост после максимального угнетения в экстремально влажный 1906 г. постепенно увеличивался, несмотря на то, что в 1907—1917 гг. среднее многолетнее количество осадков (743 мм) несколько превышало норму для влажной климатической эпохи. Наибольшего значения ширина годичных колец достигла в 1920—1940 гг. при среднегодовом количестве осадков в 679 мм.

Переход к неустойчиво влажной эпохе в 1940 г. для этой возрастной группы ознаменовался резким сокращением текущего радиального прироста, уменьшение которого продолжалось вплоть до 2011 г. Следует отметить, что двадцатилетие 1945—1965 гг. было наименее увлажненным: в среднем за год выпадало 575 мм осадков, или на 104 мм меньше, чем в предшествующие 1920—1940-е гг.

У 110-летней группы деревьев 1920—1940 гг. также характеризуются наибольшим линейным приростом после минимума в 1918 г. Его падение к 1993 г. менее выражено, чем у двух старших возрастных групп после извержения Пинатубо в 1991 г.

Сосна в исследованном насаждении с приповерхностным залеганием грунтовых вод использует их минеральные ресурсы для своего роста и развития. Регулирование водного режима принадлежит торфяной залежи сопредельного верхового болота с его гидрофильными свойствами. Радиальный прирост должен был мало зависеть от климатических (но не погодных) параметров выпадения атмосферных осадков и температурных условий. По этой причине переход от влажной эпохи к неустойчиво влажной в начале 1940-х гг. в индексовом приросте сосны слабо выражен. Более заметен переломный момент 1976 г. при сокращении притока прямой солнечной радиации [1].

Насаждение сосны имело низкую чувствительность к климатическим факторам. За исключением 220-летнего поколения, у которого коэффициент чувствительности (Кч = 0,32 до 1852 г.) превысил порог в 0,30, у трех воз-

растных групп во все остальные временные отрезки он изменялся незначительно и был ниже этого значения, чтобы считать их чувствительными к динамике климата. Как доказано, возмущения в дендрометрических рядах вызывались погодными аномалиями, приведшими к цикличной изменчивости радиального прироста.

Наибольшая дисперсия индексового прироста также пришлась на первую половину XIX в.: у 220-летнего поколения она составила 18,5 %. В остальные временные отрезки, определяющие циклы изменчивости радиального прироста, ее амплитуда менялась слабо, незначительно увеличившись у 130- и 110-летних групп после 1976 г. (рисунок 2, таблица 2).

Анализ корреляций индексового прироста трех возрастных поколений с метеофакторами (температурой воздуха и осадкам) за время инструментальных наблюдений на метеостанции Василевичи показал, что статистически значимой зависимости между ними не существовало: коэффициенты корреляции за месяцы активного роста, вегетационный период и гидрологический год большей частью оказались недостоверными как при влажной, так и неустойчиво влажной эпохе за некоторым исключением (таблица 3).

Для выявления связи фактического радиального прироста сосны с солнечной радиацией привлечены актинометрические наблюдения на метеостанции Василевичи [1]. Для групп деревьев возраста 220 и 110 лет он прямо и значимо коррелировал с рассеянной радиацией, что нашло отражение в его зависимости от суммарной (таблица 4).

Таблица 3 – Коэффициенты корреляции индексового прироста возрастных групп сосны на «острове» на верховом болоте с температурой воздуха и осадками

Воз-	Период	Коэффициент корреляции r = 0,							
раст,		1879–1905 г.		1906–1940 гг.		1941–1976 гг.		1977–2011 гг.	
лет		t °C	осадки	t℃	осадки	t °C	осадки	t°C	осадки
220	Безлист.	-07	-46	-15	-27	-19	-20	18	28
	М. – и.	-44	26	37	10	-02	-04	-41	-13
	Вегет.	-47	07	35	03	05	07	-44	33
	Год	-28	-23	13	-15	-09	-07	03	19
130	Безлист.	-	-	41	-16	24	13	03	-06
•	М. – и.	-	-	-07	-11	06	32	04	-20
	Вегет.	-	-	15	14	-12	17	27	-34
	Год	-	-	47	00	36	20	11	-35
110	Безлист.	-	-	07	05	28	<u>54</u>	37	23
	М. – и.	-	-	08	-04	18	09	-28	-18
	Вегет.	-	-	16	-12	-39	-15	-08	-03
	Год	-	-	06	-07	-45	22	27	12

Примечание. Полужирным начертанием выделены значения коэффициента корреляции при P = 0.95, полужирным начертанием и курсивом – при P = 0.99, полужирным курсивом и подчеркиванием – при P = 0.999. Безлист. – безлиственный период, м. – и. – май – июнь, вегет. – вегетационный период. Число n равно количеству лет во временном отрезке.

Возраст,	Период	Коэффициент корреляции <i>r</i> =0,							
лет			с солнечной радиац	с метеофакторами					
		прямой	рассеянной	суммарной	t °C	осадками			
220	М. – и.	14	34	23	-04	01			
	Вегет.	12	<u>53</u>	36	-20	-14			
	Год	07	<u>50</u>	33	-22	-08			
130	М. – и.	18	-05	12	-05	-16			
	Вегет.	22	16	24	-04	-27			
	Год	20	11	23	-08	-24			
110	М. – и.	-05	36	07	03	02			
	Вегет.	-08	<u>48</u>	14	-09	-05			
	Год	-15	47	09	-10	-01			

Таблица 4 – Коэффициенты корреляции (*r*) фактического радиального прироста сосны с солнечной радиацией и метеофакторами после 1955 г.

Примечание к таблице 3.

У 220-летнего поколения коэффициент корреляции фактического радиального прироста с рассеянной радиацией вегетационного периода r=0,53 (при $n=50, \mathbb{N}=0,999$), у 11-летнего r=0,48. Пользуясь шкалой Чеддока, качественную характеристику силы связи линейного прироста с этой радиацией можно оценить как заметную. У 130-летней группы такая зависимость не прослежена, что является «исключением из правил». Отрицательная корреляция радиального прироста с метеофакторами (температурой и осадками) не имела статистически значимых коэффициентов.

Соотношение между вкладом рассеянной и суммарной радиации и климатическими факторами (температурой и осадками) в стволовую продуктивность сосны в исследованном насаждении можно оценить не только по коэффициенту корреляции, но и по коэффициенту детерминации (R^2) между фактическим приростом (критериальной переменной) и предикторами, привлекая опыт подобных исследований применительно к ее насаждению на кварцевых песках [5]. Коэффициент детерминации — это квадрат корреляции Пирсона ($R^2 = r^2$) между двумя переменными. Он выражает количество дисперсии, общей между двумя переменными.

Наибольший вклад в формирование кольца у 220-летнего поколения внесла рассеянная радиация за вегетационный период текущего года ($R^2 = 0.28$ или 28%). Несколько меньшее ее участие у 110-летней группы ($R^2 = 0.23$ или 23%). У 130-летних сосен вклад рассеянной радиации оказался невысоким ($R^2 = 0.03$ или 3%). Подавление радиального прироста другими метеофакто-

рами (температурой воздуха и осадками) оказалось незначительным $(0.01 > R^2 < 0.04)$.

Результаты проведенного исследования с привлечением насаждения сосны на бедной по плодородию почве укладываются в хорошо известное представление о том, что для светолюбивых растений (в данном случае сосне) необходима рассеянная солнечная радиация, а не прямое солнечное воздействие. Усвоение этой радиации при фотосинтезе зависит от плодородия и увлажненности почвы. На бедных почвах ее значение возрастает.

Вывод. На бедной песчаной почве в «островном» (среди верхового локалитете так же, как и сосны на кварцевых песках и с ограниченным набором лимитирующих экологических факторов, изменение увлажненности служит причиной появления цикличности в радиальном приросте сосны с приповерхностным залеганием грунтовых вод. Без привлечения полученной Белгидрометеоцентром актинометрической информации объяснение современного состояния сосновых лесов Белорусского Полесья оказывается неполным.

Литература

- 1. *Киселев, В.Н.* Хвойные леса Беларуси в современных климатических условиях (дендроклиматический анализ) / В.Н. Киселев, Е.В. Матюшевская, А.Е. Яротов [и др.]. Минск: Право и экономика, 2010. 202 с.
- Киселев, В.Н. «Болотный городок» как объект дендроклиматических исследований / В.Н. Киселев, Е.В. Матюшевская, А.Е. Яротов [и др.] // Весці БДПУ. Серыя 3. – 2011. – № 1. – С. 42–47.
- 3. *Киселёв, В.Н.* Экология ели / В.Н. Киселёв, Е.В. Матюшевская. Минск: Издат. центр БГУ, 2004. 217 с.

- 4. *Киселев, В.Н.* Белорусское Полесье: экологические проблемы мелиоративного освоения / В.Н. Киселев. Минск: Наука и техника, 1982. 151 с.
- 5. *Киселев*, *В.Н.* Радиальный прирост сосны на кварцевых песках Белорусского Полесья / В.Н. Киселев, Е.В. Матюшевская, А.Е. Яротов [и др.] // Весці БДПУ. Серыя 3. 2011. № 3. С. 35–46.

SUMMARY

Variability of radial growth of pine in the age of 220 years on a sandy soil with a natural, not disturbed drainage reclamation of surface groundwater regime was determined by precipitation. 30–35-year-old of her cycle is revealed. The actual radial growth of pine is dependent on diffuse of solar radiation.

Поступила в редакцию 17.01.2012 г.

