

Том 52, 1982 г.

Авторский оттиск

PEROSAN

УДК 539.107.6:539.12.04

Применение метода резонансных ядерных реакций для изучения пространственного распределения алюминия,

имплантированного в арсенид галлия

дэвис дж., ташлыков и. с., хау л.

Резонансные ядерные реакции эффективны для определения малого количества элементов и их распределения в твердых телах [1]. В настоящем исследовании предпринята понытка с применением ядерной реакции 27 Al (p, γ) 28 Si, имеющей ширину резонанса 100 эВ при энергии протонов 991,9 кэВ, определить профили распределения алюминия, имплантированного в арсенид галлия.

Возможности ионно-лучевой технологии для модификации материалов привлекают в последнее время пристальное внимание ученых [2]. В частности, облучение GaAs высокими и сверхвысокими потоками Al⁺ имеет научный и практический интерес в связи с попыткой решения проблемы создания соединений Al_xGa_{1-x}As с использованием ионных пучков.

Исследования кристаллов GaAs, облученных Al+, проведены разнообразными методами: катодолюминесценции [3], комбинационного рассеяния света [4], методом резерфордовского обратного рассеяния ионов Не+ [5]. Однако интерпретация полученных результатов у разных авторов носит противоречивый характер. Например, значительные искажения решетки в кристаллах, имплантированных при комнатной температуре, объясняются неравномерным распределением внедренных атомов в образующихся при внедрении алюминия твердых растворах [4]. В этой же работе сделан вывод об утонении имплантированного слоя вследствие предполагаемого усиления распыления мишени при повышении ее температуры при внедрении. Авторами работы [3], наоборот, замечено уширение излучающего в коротковолновой области слоя при высокотемпературном внедрении алюминия в GaAs, толщина которого ~0,4 мкм (заметим, что $\overline{R}_p = 0,044$ мкм и $\Delta \overline{R}_p = 0,028$ мкм для $E_{A1} = 50$ кэВ [6]). Нами ранее [5] отмечен сравнительно низкий уровень остаточного радиационного повреждения в кристаллах GaAs в случае имплантации алюминия при 400 и 500 °C. Было качественно оценено распределение внедренного алюминия по глубине, согласующееся с оценками работы [3].

Настоящая работа позволила установить характер распределения алюминия, имплантированного в GaAs, выяснить влияние температуры имплантации на профили алюминия, уточнить интерпретацию ранее полученных результатов.

Ионы Al⁺ ускорялись на масс-сепараторе Чок-Риверских ядерных лабораторий (CRNL) до E = 50 кэВ и имплантировались в разориентированные (100) кристаллы GaAs при 293 К ($T_{\rm KOMH}$), 100 и 375 °C. Интегральные потоки составляли 8·10¹⁶ и 1,2·10¹⁷ Al⁺/см² для первых двух и третьего значений температуры соответственно. Плотность тока ионов 2—3 мкА/см². Исследования выполнены на электростатическом ускорителе ионов ЭСУ-2. Регулировка энергии протонов обеспечена с погрешностью ± 0.5 кэВ; γ -излучение регистрировалось сцинтилляционным Nal-детектором (длина и диаметр по 12,7 см), помещенным в свинцовую защиту для уменьшения фона от космического излучения. Сигнал от алюминия контролировали в области энергии 1,05—5,1 МэВ одновременно на трех участках с различным уровнем фона. В процессе эксперимента выполнена корректировка фона, связанного с различной энергией протонов, временем анализа при меняющемся токе.

Построение зависимости выхода ү-излучения Y_{A1}^{GaAs} от алюминия, внедренного в GaAs, от энергии протонов позволяет получить качественное приближение профила распределения, если принять шкалу абсцисс в едини средних потерь энергии протонов в GaAs. Точный профила определен сравнением сигналов с выходом ү-излучения Y_{A1}^{A1} , получаемым для тех же значений энергии протонов при анализе мищени с известной концентрацией алюминия, например алюминиевого стандарта. При этом предложена следующая методика: $Y_{A1}^{GaAs} \sim N_{A1}^{GaAs}$ и $Y_{A1}^{A1} \sim N_{A1}^{A1}$. Поскольку $N_{A1}^{A1} = \Delta E/e^{A1}$, где ΔE — энергетическая ширина анализируемого слоя, а ε^{A1} — тормозная способность атомов A1, то $Y_{A1}^{A1} \sim \Delta E/\varepsilon^{A1}$. Тогда

$$V_{\rm A1}^{\rm GaAs} = \frac{Y_{\rm A1}^{\rm GaAs}}{Y_{\rm A1}^{\rm A1}} \frac{\Delta E}{\epsilon^{\rm A1}}.$$
 (1)

При определении содержания алюминия в GaAs значения Y_{A1}^{GaAs} и Y_{A1}^{A1} взяты из эксперимента, ε^{A1} находится из таблиц работы [7], значение ΔE известно.

Вместе с тем относительная концентрация алюминия в GaAs может быть найдена с учетом того, что $N_{\text{GaAs}}^{\text{GaAs}} = \Delta E \varepsilon^{3} \varepsilon^{3}$ в этом случае, подставляя ΔE в выражение (1), получаем

$$V_{A1}^{GaAs} = \frac{Y_{A1}^{GaAs}}{Y_{A1}^{A1}} \xrightarrow{\epsilon^{GaAs}}{\epsilon^{A1}} N_{GaAs}^{GaAs} \qquad (2)$$

Для доли атомов алюминия в матрице GaAs справедливо

$$\frac{N_{A1}^{GaAs}}{N_{GaAs}^{GaAs}} = \frac{Y_{A1}^{GaAs}}{Y_{A1}^{A1}} - \frac{\varepsilon^{GaAs}}{\varepsilon^{A1}} \left(\frac{\text{атомов алюминия}}{\text{атомов матрицы}}\right).$$
(3)

Полученные таким образом профили алюминия приведены на рисунке. При переходе к шкале глубины учитывалось уменьшение тормозной способности имплантированной матрицы вследствие введения сравнимого с концентрацией атомов матрицы количества более легких атомов алюминия. Изменяющаяся с глубиной тормозная способность имплантированного слоя кристалла рассчитывалась с учетом правила аддитивности для тормозной способности смесей

$$\varepsilon^{\mathrm{Al}_{x}\mathrm{Ga}_{1-x}\mathrm{As}} = \frac{x}{2} \varepsilon^{\mathrm{Al}} + \left(1 - \frac{x}{2}\right) \varepsilon^{\mathrm{GaAs}}.$$
 (4)

Таким образом, разрешение по глубине оказалось зависящим от содержания алюминия и составило 19-16 нм.

Ход кривой 1 на рисунке показывает, что при температуре внедрения $T_{\rm KOMH}$ профиль алюминия имеет плато с незначительно изменяющейся концентрацией ($x \approx 0.3$) от поверхности до глубины 60—70 нм, после чего концентрация алюминия уменьшается до $x \approx 0.01$ на глубине ~170 нм. Сравнивая данные результаты с $\overline{R}_{p,\text{теор}}$ (учитывая и страгглинг) [6], получаем различие в 50%, что безусловно связано с радиационно-стимулированной диффузией алюминия вглубь, а не с эффектом каналирования, поскольку внедрение осуществлялось в разориентированные кристаллы. Аргументами в пользу диффузионного механизма перераспределения алюминия служит также большое количество алюминия непосредственно на поверхности облученного кристалла, а также характер хода «хвоста» профиля 1 на рисунке.

Подогрев кристалла до 100 °С во время внедрения активирует процессы радиационно-стимулированной диффузии. Причем алюминий распространяется не только на еще большую глубину до ~200 нм, но значительно повышается его концентрация на поверхности: с $x \approx 0,38$ до $x \approx 0,46$ (см. рисунок).

Оба эффекта ярко выражены при температуре внедрения 375 °С. Глубина распространения алюминия при дозе 1,2 · 10¹⁷ см⁻² становится в 2,3 раза больше теоретически предсказываемой. Причем с глубины ~20 до ~100 нм Формируется слой с постоянным содержанием алюминия

 $0,4 \div 0,45$; кривая 3 на рисунке). Небольшое количество алюминия прослеживается на глубине ~210 нм. Непосредственно на поверхности облученного кристалла алюминия содержится до 50% общей концентрации атомов матрицы. Заметим, что интегрирование сигнала от алюминия по всей глубине мишени показало хорошее (в пределах точности метода) совпадение его содержания с интегральными потоками иопов A1⁺, внедренных при трех значениях температуры. Эти факты свидетельствуют или о незначитемпературы. Эти факты свидетельствуют или о незначитемпературы и не зависящем от температуры распылении поверхностей (100) GaAs, или, что более вероятно, об избирательном распылении атомов какого-либо сорта сложной мишени, а не атомов алюминия.

Сравнивая настоящие результаты с полученными ранее, заметим, что высказанные в работе [4] предположения о перавномерном распределении в GaAs алюминия, внедренного при $T_{\rm KOMH}$, и утонении имплантированного слоя при имплантации алюминия в подогреваемые кристаллы GaAs не подтверждаются результатами настоящего имплантированный алюминий [3 и 5], почти вдвсе превышает полученную в настоящей работе ($T_{\rm BHedp} = 375$ °C), отмечается также и несовпадение характера профилей, полученных в работе [5]. На наш взгляд, последние различия могут быть обусловлены существенно разными режимами внедрения алюминия (различная температура подогрева качество понных пучков).

Таким образом, настоящее исследование показало, что при температуре внедрения *Т*_{комн} алюминий распространяется в GaAs достаточно равнолерно до глубины, превышающей теоретическую на 50 % Подогрев кристаллов в процессе имплантации приводит к расширению профиля вглубь на 30—40 нм при 100 °С и примерно на 60 м при

Профили алюминия, имплантированного в кристаллы (100) GaAs при $E_{A1} = 50$ кэВ: 1, 2 — $8 \cdot 10^{16}$ Al⁺/см² соответственно при $T_{\text{комн}}$ и 100° C; $3 - 1, 2 \cdot 10^{17}$ Al⁺/см² при $T = 375^{\circ}$ C

375 °С. Кроме того, при подогреве кристаллов в результате радиационно-стимулированных диффузионных процессов, активированных температурой, значительно исвышается концентрация алюминия на поверхности облученных кристаллов.

Настоящее исследование показало высокие эффективность и надежность применения резонансной ядерной реакции ²⁷ Al $(p, \gamma)^{28}$ Si в сочетании с предложенной методикой аналитической обработки данных для профилирования алюминия в тонких ионно-имилантированных слоях твердых тел.

СПИСОК ЛИТЕРАТУРЫ

- 1. Thin Solid Films, 1973, v. 19, p. 1.
- Gyulai J., Lohner T., Pastor E.- In: Proc. Conf. on Ion Beam Modification of Materials. Budapest, KFKI sokszorosito üzeme, 1979, p. 1177.
- 3. Кузнецов О. Н. и др. Физика и техника полупроводников, 1977, т. 11, с. 1449.
- 4. Новак И. И. и др.— Физика твердого тела, 1978, т. 20, с. 2134.
- Ташлыков И. С.— В кн.: Взаимодействие заряженных частиц с твердым телом. Ч. 2. Минск, изд. Минск. Радиотехн. ин-та, 1978, с. 125.
- Буренков А. Ф. и др. Таблицы нараметров пространственного распределения ионно-имплантированных примесей. Минск, Изд-во Белорус. гос. ун-та, 1980.
- 7. Andersen H., Ziegler J. The Stopping and Ranges of Ions in Matter. V. 3. N.Y., Perg. Press, 1977. Поступило в Редакцию 20.11.80

УДК 546.791:536.722

Энергетические характеристики фтороуранатов (IV)

щелочных металлов

волков в. А., суглобова и. г., чиркст д. Э.

Фторироизводные U(IV) используются в качестве ядерного топлива в реакторах на расплавленных солях, при получении металлического урана и в процессах регенерации ядерного топлива безводными методами, однако термохимические свойства исследованы только для UF₄. Ранее [1] были получены методом растворной калориметрии стандартные энтальнии образования Na_3UF_7 , Rb_3UF_7 и Cs_2UF_6 . Настоящая работа завершает это исследование. Фтороуранаты типа M_2UF_6 и M_3UF_7 былп получены сплавлением в молибденовых или медных тиглях стехиометрического количества дважды возогнанного UF₄ н фторидов щелочных металлов. Тигли помещали в кварцевые чехлы, которые эвакупровались. Рентгенограммы поликристаллов полностью соответствовали известным структурным данным для β_3 -Na₂UF₆ [2], β_1 -K₂UF₆ [3], Rb₂UF₆ [4] и^{*} β -K₃UF₇ [5]; Cs₃UF₇ имел кубическую гранецентрированную решетку с а = (0,998 ± 0,001) нм.