Algebra and Discrete Mathematics RESEARCH ARTICLE Number 2. (2004). pp. 15 – 35 °c Journal "Algebra and Discrete Mathematics"

On the Tits alternative for some generalized triangle groups

Valery Beniash-Kryvets, Oxana Barkovich

Communicated by Komarnytskyj

Algebra and Discrete Mathematics

Sumber 2. (2004). pp. 15–35

C Journal "Algebra and Discrete Mathematics"

C Journal "Algebra and Discrete Mathematics"

C Loural "Algebra and Discrete Mathematics"

C Loural "Algebra and ABSTRACT. One says that the Tits alternative holds for a finitely generated group Γ if Γ contains either a non abelian free subgroup or a solvable subgroup of finite index. Rosenberger states the conjecture that the Tits alternative holds for generalized triangle groups $T(k, l, m, R) = \langle a, b; a^k = b^l = R^m(a, b) = 1 \rangle$. In the paper Rosenberger's conjecture is proved for groups $T(2,l, 2, R)$ with $l = 6, 12, 30, 60$ and some special groups $T(3, 4, 2, R)$. Communicated by Komarnytskyj MYa.

ABSTRACT. One says that the Tits alternative h

intely generated group Γ if Γ contains either a non a

ubgroup or a solvable subgroup of finite index. Rosenbe

he conjecture that t

Introduction

J. Tits $[15]$ proved that if G is a finitely generated linear group then G contains either a non abelian free subgroup or a solvable subgroup of finite index. Let Γ be an arbitrary finitely generated group. One says that the Tits alternative holds for Γ if Γ satisfies one of these conditions.

An one-relator free product of a family of groups $\{G_i\}, i \in I$, is called the group $G = (\ast G_i)/N(S)$, where S is a cyclically reduced word in the free product $*G_i$, $N(S)$ is its normal closure. S is called the relator. One-relator free products share many properties with one-relator groups [7]. We consider the case when G_i 's are cyclic groups.

Definition 1. A group Γ having a presentation

$$
\Gamma = \langle a_1, \dots, a_n; a_1^{l_1} = \dots = a_n^{l_n} = R^m(a_1, \dots, a_n) = 1 \rangle, \qquad (1)
$$

²⁰⁰⁰ Mathematics Subject Classification: 20E06, 20E07, 20H10.

Key words and phrases: Tits alternative, generalized triangle group, free subgroup.

where $n \geq 2$, $m \geq 1$, $l_i = 0$ or $l_i \geq 2$ for all i, $R(a_1, \ldots, a_n)$ is a cyclically reduced word in the free group on a_1, \ldots, a_n which is not a proper power, is called an one-relator product of n cyclic groups.

One relator products of cyclic groups provide a natural algebraic generalization of Fuchsian groups which are one relator products of cyclics relative to the standard Poincare presentation (see [6])

$$
F = \langle a_1, \dots, a_p, b_1, \dots, b_t, c_1, d_1, \dots, c_g, d_g;
$$

$$
a_i^{m_i} = a_1 \dots a_p b_1 \dots b_t [c_1, d_1] \dots [c_g, d_g] = 1 \rangle.
$$

If $n = 2$ and $m \geq 2$ then we have so-called *generalized triangle groups*

$$
T(k, l, m, R) = \langle a, b; a^k = b^l = R^m(a, b) = 1 \rangle.
$$

If $R(a, b) = ab$ then we obtain an ordinary triangle group.

Let Γ be a group of the form (1) and $m \geq 2$. If either $n \geq 4$ or $n = 3$ and $(l_1, l_2, l_3) \neq (2, 2, 2)$ then Γ contains a free subgroup of rank 2 [5]. If $n = 3$ and $(l_1, l_2, l_3) = (2, 2, 2)$ then Γ either contains a free subgroup of rank 2 or a free abelian subgroup of rank 2 and index 2.

The case when Γ is a generalized triangle group is much more difficult. Rosenberger stated the following conjecture.

Conjecture 1 ([13]). The Tits alternative holds for generalized triangle groups.

 $n \geq 2$, $m \geq 1$, $l_i = 0$ or $l_i \geq 2$ for all i , $R(a_1, ..., a_n)$ is a cyclically
word in the free group on $a_1, ..., a_n$ which is not a proper power,
when the constraint products of y cyclic groups.
For a constraint product Fine, Levin, and Rosenberger proved this conjecture in the following cases: 1) $l = 0$ or $k = 0$; 2) $m > 3$ [5]. Now suppose that $k, l, m \ge 2$. Let $s(\Gamma) = 1/k + 1/(1 + 1/m)$. If $s(\Gamma) < 1$ then Baumslag, Morgan and Shalen [1] proved that the group Γ contains a non abelian free subgroup. Using some new methods, Howie [8] proved Conjecture 1 in the case $s(\Gamma) = 1$ and up to equivalence $R \neq ab$. If $s(\Gamma) = 1$ and $R = ab$ then Γ is an ordinary triangle group. The classical result says that Γ contains $\mathbb Z$ as a subgroup of finite index. *Ref. l, m, R*) = $\langle a, b; a^k = b^l = R^m(a, b) = 1 \rangle$

hen we obtain an ordinary triangle group.

roup of the form (1) and $m \ge 2$. If either $n \ge 4$ or
 $(2, 2, 2)$ then Γ contains a free subgroup of rank 2
 a, l_3 = $(2, 2$

Now consider groups of the form

$$
\Gamma = T(2, l, 2, R) = \langle a, b; a^2 = b^l = R^2(a, b) = 1 \rangle,
$$
 (2)

where $l > 2$, $R = ab^{v_1} \dots ab^{v_s}$, $0 < v_i < l$. In the following cases Conjecture 1 holds for $\Gamma: (1)$ $s \leq 4$ [13], [9]; 2) $l > 5$ and $l \neq 6, 10, 12, 15, 20, 30, 60$ [2], [3]. In this paper we prove two theorems.

Theorem 1. Let Γ be a group of the form (2) with $s \geq 5$ and $l \in$ $\{6, 12, 30, 60\}$. Then Γ contains a free subgroup of rank 2.

Theorem 2. Let $\Gamma = \langle a, b; a^3 = b^4 = R^2(a, b) = 1 \rangle$, where $R =$ $a^{u_1}b^{v_1} \dots a^{u_s}b^{v_s}$ with $0 \lt u_i \lt 3$ and $0 \lt v_i \lt 4$. In the following cases Γ contains a non-abelian free subgroup: i) $V = \sum_{i=1}^{s} v_i$ is even; ii) s is even.

Thus, Conjecture 1 is still open for groups $T(2, l, 2, R)$ with $l =$ 3, 4, 5, 10, 15, 20 and groups $T(3, l, 2, R)$ with $l = 3, 4, 5$.

1. Some auxiliary results

In this section we prove several auxiliary results used in the proofs of theorems 1 and 2. Throughout we shall denote the ring of algebraic integers in $\mathbb C$ by $\mathcal O$, the group of units in $\mathcal O$ by $\mathcal O^*$, the free group of a rank 2 with generators g and h by $F_2 = \langle g, h \rangle$, the greatest common divisor of integers a and b by (a, b) . the image of a matrix $A \in SL_2(\mathbb{C})$ in $PSL_2(\mathbb{C})$ by [A], the trace of a matrix A by tr A, the identity matrix in $SL_2(\mathbb{C})$ by E. The following lemma characterizes elements of finite order in $PSL_2(\mathbb{C})$. In and 2. Throughout we shall denote the ri

s in $\mathbb C$ by $\mathcal O$, the group of units in $\mathcal O$ by $\mathcal O^*$, the

with generators g and h by $F_2 = \langle g, h \rangle$, the gr

of integers a and b by (a, b) . the image of a ma

Lemma 1. Let $2 \le m \in \mathbb{Z}$ and $\pm E \ne X \in SL_2(\mathbb{C})$. Then $[X]^m = 1$ in $PSL_2(\mathbb{C})$ if and only if $\text{tr } X = 2 \cos \frac{r\pi}{m}$ for some $r \in \{1, \ldots, m-1\}.$

The proof easily follows from the fact that $\varepsilon, \varepsilon^{-1}$, where ε is a root of unity of degree m , are the eigenvalues of the matrix X .

Theorem 2. Let $\Gamma = \langle a, b, a^3 - b^4 - R^3(a, b) - 1 \rangle$, where R $a^{n_1}b^{n_1}...a^{n_k}b^{n_k}$ with $0 \le u_i \le 3$ and $0 \le v_i \le 4$. In the following so sees! contains a non-aletian free subgroup: δ $V = \sum_{i=1}^8 w_i'$ is even, Thus, We shall use standard facts from geometric representation theory (see [4, 10]). Here we recall some notations. Let $F_n = \langle g_1, \ldots, g_n \rangle$ be a free group, $R(F_n) = SL_2(\mathbb{C})^n$ be a representation variety of F_n in $SL_2(\mathbb{C})$ The group $GL_2(\mathbb{C})$ acts naturally on $R(F_n)$ (by simultaneous conjugation of components) and its orbits are in one-to-one correspondence with the equivalence classes of representations of F_n . Under this action orbits of $GL_2(\mathbb{C})$ are not necessarily closed and so the variety of orbits (the geometric quotient) is not an algebraic variety. However one can consider the categorical quotient $R(F_n)/GL_2(\mathbb{C})$ (see [12]), which we shall denote by $X(F_n)$ and call the variety of characters. By construction, its points parametrize closed $GL_2(\mathbb{C})$ -orbits. It is well known that an orbit of a representation is closed iff the corresponding representation is fully reducible and so the points of the variety $X(F_n)$ are in one-to-one correspondence with the equivalence classes of fully reducible representations of Γ in $SL_2(\mathbb{C})$.

For an arbitrary element $g \in F_n$ one can consider the regular function

$$
\tau_g: R(F_n) \to \mathbb{C}, \qquad \tau_g(\rho) = \text{tr}\,\rho(g).
$$

r, τ_{β} is called a *Friche channets* of the element g. It is known that
digebra $T(F_n)$ generated by all functions τ_y , $g \in F_n$, is equal to
 $T(F_n)$ [Eq.(k)]⁶¹(C). Combining results of $\{1, 14\}$ it is easy to
 $T(F$ Usually, τ_q is called a Fricke character of the element g. It is known that the C-algebra $T(F_n)$ generated by all functions τ_g , $g \in F_n$, is equal to $\mathbb{C}[X(F_n)] = \mathbb{C}[R(F_n)]^{\text{GL}_2(\mathbb{C})}$. Combining results of [4, 14] it is easy to see that $T(F_n)$ is generated by Fricke characters $\tau_{g_i} = x_i$, $\tau_{g_ig_j} = y_{ij}$, $\tau_{g_ig_jg_k} = z_{ijk}$, where $1 \leq i < j < k \leq n$. Consider a morphism π : $R(F_n) \to \mathbb{A}^t$ defined by

$$
\pi(\rho) = (x_1(\rho), \dots, x_n(\rho), y_{12}(\rho), \dots, y_{n-1,n}(\rho), z_{123}(\rho), \dots, z_{n-2,n-1,n}(\rho)),
$$
 (3)

where $t = n + n(n-1)/2 + n(n-1)(n-2)/6$. The image $\pi(R(F_n))$ is closed in \mathbb{A}^t [4]. Since $X(F_n)$ and $\pi(R(F_n))$ are biregularly isomorphic, we shall identify $X(F_n)$ and $\pi(R(F_n))$. Obviously, dim $R(F_n) = 3n$, $\dim X(F_n) = 3n - 3.$ Set

$$
R^{s}(F_n) = \{ \rho \in R(F_n) \mid \rho \text{ is irreducible} \}, \qquad X^{s}(F_n) = \pi(R^{s}(F_n)).
$$

 $R^{s}(F_n)$, $X^{s}(F_n)$ are open in Zariski topology subsets of $R(F_n)$, $X(F_n)$ respectively [4].

Now, consider a free group $F_2 = \langle g, h \rangle$. The ring $T(F_2)$ is generated by the functions $\tau_q, \tau_h, \tau_{gh}$.

Lemma 2. For all $\alpha, \beta, \Gamma \in \mathbb{C}$ there exist matrices $A, B \in SL_2(\mathbb{C})$ such that $\tau_q(A, B) = \text{tr } A = \alpha$, $\tau_h(A, B) = \text{tr } B = \beta$, $\tau_{qh}(A, B) = \text{tr } AB = \alpha$ $\tau_h(A, B) = \text{tr } B = \beta, \quad \tau_{gh}(A, B) = \text{tr } AB =$ Γ. $y X(F_n)$ and $\pi(R(F_n))$. Obviously, dim $R(F_n)$
 $\nu - 3$. Set
 $\in R(F_n) | \rho$ is irreducible}, $X^s(F_n) = \pi(R^s(F_n))$

are open in Zariski topology subsets of $R(F_n)$,

er a free group $F_2 = \langle g, h \rangle$. The ring $T(F_2)$ is gen
 $\nu \tau_g,$

This lemma can be easily proved by straightforward computations.

Lemma 2 implies that $X(F_2) = \pi(R(F_2)) = \mathbb{A}^3$. Moreover, the functions $\tau_g, \tau_h, \tau_{gh}$ are algebraically independent over $\mathbb C$ and for every $u \in F_2$ we have

$$
\tau_u = Q_u(\tau_g, \tau_h, \tau_{gh}),
$$

where $Q_u \in \mathbb{Z}[x, y, z]$ is a uniquely determined polynomial with integer coefficients [4]. The polynomial Q_u is usually called the Fricke polynomial of the element u .

Consider polynomials $P_n(\lambda)$ satisfying the initial conditions $P_{-1}(\lambda)$ = 0, $P_0(\lambda) = 1$ and the recurrence relation

$$
P_n(\lambda) = \lambda P_{n-1}(\lambda) - P_{n-2}(\lambda).
$$

If $n < 0$ then we set $P_n(\lambda) = -P_{|n|-2}(\lambda)$. The degree of the polynomial $P_n(\lambda)$ is equal to n if $n > 0$ and to $|n| - 2$ if $n < 0$. It is easy to verify by induction on n that

$$
P_n(2\cos\varphi) = \frac{\sin(n+1)\varphi}{\sin\varphi}.
$$
 (4)

It follows from (4) that the polynomial $P_n(\lambda)$, $n \geq 1$, has n zeros described by the formula

$$
\lambda_{n,k} = 2\cos\frac{k\pi}{n+1}, \qquad k = 1, 2, \dots, n. \tag{5}
$$

Moreover, it is easy to verify by induction that for $n \geq 0$ we have

$$
P_{2n}(\lambda) = \lambda^{2n} + \dots + (-1)^n
$$

\n
$$
P_{2n-1}(\lambda) = \lambda(\lambda^{2n-2} + \dots + (-1)^n)^{-1}n.
$$
 (6)

Lemma 3. Let $k, l \in \mathbb{Z}$, $(k, l) = 1$ and $l \geq 2$ is not a power of a prime. Then $2\sin\frac{k\pi}{l} \in \mathcal{O}^*$.

Proof. Let $l = 2^t u$, where u is odd. If $t = 1$ then k is odd and $2 \sin \frac{k\pi}{l} =$ $2 \cos \frac{r\pi}{u}$ with $r = (u - k)/2 \in \mathbb{Z}$ Since $u - 1$ is even, it follows from (6) that $2 \cos \frac{r\pi}{u} \in \mathcal{O}^*$.

If $t > 1$ then k is odd and $2\sin\frac{k\pi}{l} = 2\cos\frac{r\pi}{2^t u}$ with $r = 2^{t-1}u - k$.

If $t = 0$ then $2\sin\frac{k\pi}{l} = 2\cos\frac{r\pi}{2u}$ with $r = u - 2k$.

Thus, it is sufficient to prove that $2 \cos \frac{r\pi}{2^t u} \in \mathcal{O}^*$, where $t \geq 1$, $(r, 2^tu) = 1, u > 1$ and u is not a power of a prime in the case $t = 1$. Let $u = p_1^{\alpha_1} \dots p_s^{\alpha_s}$, where p_i is a prime and $0 < \alpha_i \in \mathbb{Z}$ for $i = 1, 2, \dots, s$. By (5) numbers $\lambda_i = 2 \cos \frac{i}{2^t u} \pi, i = 1, 2, ..., 2^t u - 1$, are the roots of the polynomial $P_{2^tu-1}(\lambda)$, so that Let $l = 2^t u$, where u is odd. If $t = 1$ then k is odd
 \therefore with $r = (u - k)/2 \in \mathbb{Z}$ Since $u - 1$ is even, it f
 $\cos \frac{r\pi}{u} \in \mathcal{O}^*$.
 > 1 then k is odd and $2 \sin \frac{k\pi}{l} = 2 \cos \frac{r\pi}{2^t}$ with $r = 0$ then $2 \sin \frac{k\pi}{$

$$
P_{2^t u-1}(\lambda) = \prod_{i=1}^{2^t u-1} (\lambda - \lambda_i)
$$

It follows from (4) that the polynomial $P_n(\lambda), n \ge 1$, has n zeros d
scribed by the formula $\lambda_{n,k} = 2 \cos \frac{k\pi}{n+1}$, $k = 1,2,\ldots,n$. (A)
Moreover, it is easy to verify by induction that for $n \ge 0$ we have
 $P_{2n}(\lambda) = \lambda^{2n} + \$ and the constant term of $P_{2^t u-1}$ is equal to $(-1)^{2^{t-1}-1} 2^{t-1} p_1^{\alpha_1} \dots p_s^{\alpha_s}$. On the other hand, the polynomials $P_{2p_i^{\alpha_i}-1}(\lambda)$, i=1,2,...,s, and $P_{2^t-1}(\lambda)$ has the roots $2 \cos \frac{j\pi}{2p_i^{\alpha_i}}$, $j = 1, 2, ..., 2p_i^{\alpha_i} - 1$, and $2 \cos \frac{j\pi}{2^t}$, $j = 1, 2, ..., 2^t - 1$, respectively. Hence, all these polynomials divide $P_{2^tu-1}(\lambda)$ and any two of them have only one common root $\lambda = 0$. Hence,

$$
P_{2^t u - 1}(\lambda) = F(\lambda) F_1(\lambda),
$$

where

$$
F(\lambda) = \lambda^{-s} P_{2^t - 1}(\lambda) \prod_{i=1}^s P_{2p_i^{\alpha_i} - 1}(\lambda).
$$

By (5) the constant term of $F(\lambda)$ is equal to $(-1)^{2^{t-1}-1}2^{t-1}p_1^{\alpha_1}\ldots p_s^{\alpha_s}$. Consequently, the constant term and the leading coefficient of $F_1(\lambda)$ are equal to 1. Since $2 \cos \frac{r\pi}{2^t u}$ is not a root of $F(\lambda)$, it is a root of $F_1(\lambda)$ and we obtain $2 \cos \frac{r\pi}{2^t u} \in \overline{\mathcal{O}}^*$ as required. П

Furthermore, we require the more detailed information on the Fricke polynomials. Let $w = g^{\alpha_1} h^{\beta_1} \dots g^{\alpha_s} h^{\beta_s} \in F_2$ and let $x = \tau_g$, $y = \tau_h$, $z = \tau_{gh}$. Let us treat the Fricke polynomial $Q_w(x, y, z)$ as a polynomial in z. Set

$$
Q_w(x, y, z) = M_n(x, y)z^n + M_{n-1}(x, y)z^{n-1} + \ldots + M_0(x, y).
$$

Lemma 4 ([16]). The degree of the Fricke polynomial $Q_w(x, y, z)$ with respect to z is equal to s and its leading coefficient $M_s(x, y)$ has the form

$$
M_s(x,y) = \prod_{i=1}^s P_{\alpha_i - 1}(x) P_{\beta_i - 1}(y).
$$
 (7)

A subgroup $H \in \text{PSL}_2(\mathbb{C})$ is called *non-elementary* if H is infinite, irreducible and non-isomorphic to a dihedral group. *i*=1
 H \in PSL₂(C) is called *non-elementary* if *H* is in

non-isomorphic to a dihedral group.
). Let $H \in \text{PSL}_2(\mathbb{C})$ be a non-elementary subgroup.
). Let $A, B \in \text{SL}_2(\mathbb{C})$ and $\text{tr } A = x$, $\text{tr } B = y$,

Lemma 5 ([11]). Let $H \in \text{PSL}_2(\mathbb{C})$ be a non-elementary subgroup. Then H contains a non-abelian free subgroup.

Lemma 6 ([4]). Let $A, B \in SL_2(\mathbb{C})$ and $\text{tr } A = x$, $\text{tr } B = y$, $\text{tr } AB = z$. A subgroup $\langle A, B \rangle$ is irreducible if and only if

$$
\text{tr }ABA^{-1}B^{-1} = x^2 + y^2 + z^2 - xyz - 2 \neq 2.
$$

2. Proof of Theorem

Let Γ be a group from Theorem 1, that is,

$$
\Gamma = T(2, l, 2, R) = \langle a, b, a^2 = b^l = R^2(a, b) = 1 \rangle,
$$
 (8)

thermore, we require the more detailed information on the Fricke

mials. Let $w = g^{\alpha_1}h^{\beta_1} \dots g^{\alpha_r}h^{\beta_r} \in F_2$ and let $x = \tau_0$, $y = \tau_0$,
 $y = \tau_0$, $y = \tau_0$,
 x bet us treat the Fricke polynomial $Q_w(x, y, z)$ as a p where $R = ab^{v_1} \dots ab^{v_s}$, $0 < v_i < l$, $s > 4$. Set $V = \sum_{i=1}^s v_i$. If $(V, l) \neq 1$ then Γ contains a non-abelian free subgroup (see [2]). So we shall assume that $(V, l) = 1$. To prove Theorem 1, we construct a representation $\rho : \Gamma \to \text{PSL}_2(\mathbb{C})$ such that $\rho(\Gamma)$ contains a non-abelian free subgroup. Let k be an integer such that $\frac{k}{l} = \frac{k'}{l'}$ $\frac{k'}{l'}$ with $(k', l') = 1$ and $l' > 5$. Set

$$
\beta_k = 2\cos\frac{k\pi}{l}, \qquad f_{R,k}(z) = Q_R(0,\beta_k,z),\tag{9}
$$

where Q_R is the Fricke polynomial of R.

Definition 2. Let z_0 be a root of a polynomial $f_{R,k}(z)$ and $A, B \in SL_2(\mathbb{C})$ be matrices such that $tr A = 0$, $tr B = \beta_k$, $tr AB = z_0$. We shall denote by $G(z_0)$ a subgroup of $PSL_2(\mathbb{C})$, generated by $[A], [B]$.

The group $G(z_0)$ is an epimorphic image of Γ since by Lemma 1

$$
[A]^2 = [B]^l = R^2([A], [B]) = 1.
$$

Lemma 7. Numbers $\pm 2 \sin \frac{k\pi}{l}$ are not roots of the polynomial $f_{R,k}(z)$.

The group $G(z_0)$ is an epimorphic image of F since by Lemma 1
 $[A]^2 = [B]^i = R^2([A],[B]) = 1$.

Lemma 7. Nombers $\pm 2 \sin \frac{k\pi}{l}$ are not roofs of the polynomial $f_{R,k}(z)$

Proof. Suppose that $f_{R,k}(-2 \sin \frac{k\pi}{l}) = 0$. Let ϵ be *Proof.* Suppose that $f_{R,k}(-2\sin\frac{k\pi}{l})=0$. Let ε be a primitive root of unity of degree 2l. Consider a representation $\rho_k : F_2 \to SL_2(\mathbb{C})$ defined by

$$
\rho_k(g) = A = \begin{pmatrix} \varepsilon^{l/2} & 0 \\ 1 & \varepsilon^{-l/2} \end{pmatrix}, \qquad \rho_k(h) = B_k = \begin{pmatrix} \varepsilon^k & x \\ 0 & \varepsilon^{-k} \end{pmatrix}.
$$
 (10)

Then we have tr $A = 0$, tr $B_k = \beta_k$, tr $AB_k = x - 2 \sin \frac{k\pi}{l}$. So we obtain

$$
f_{R,k}(z)(\rho_k) = f_{R,k}(x - 2\sin\frac{k\pi}{l}) = g_k(x) = \text{tr } R(A, B_k).
$$

Since $-2\sin\frac{k\pi}{l}$ is a root of $f_{R,k}(z)$, 0 is a root of $g_k(x)$. This means that a constant term of $g_k(x)$ is equal to 0. On the other hand, a constant term of tr $R(A, B_{-k})$ is equal to

$$
\varepsilon^{ls/2+kV} + \varepsilon^{\lceil ls/2-kV\rceil} = 2\cos(\frac{ls/2+kV}{l}) \neq 0,
$$

since $(V, l) = 1$ by assumption. This contradiction proves that $2 \sin \frac{k\pi}{l}$ is not a root of $f_{R,k}(z)$. Analogously, considering a matrix B_{-k} instead the matrix B_k , we obtain that $2\sin\frac{k\pi}{l}$ is not a root of $f_{R,k}(z)$. ve have tr $A = 0$, tr $B_k = \beta_k$, tr $AB_k = x - 2 \sin \frac{k\pi}{l}$
 $f_{R,k}(z)(\rho_k) = f_{R,k}(x - 2 \sin \frac{k\pi}{l}) = g_k(x) = \text{tr } R($
 $-2 \sin \frac{k\pi}{l}$ is a root of $f_{R,k}(z)$, 0 is a root of $g_k(x)$. Then term of $g_k(x)$ is equal to 0. On the other has

f

Lemma 8. Assume that the polynomial $f_{R,k}(z)$ has a root $z_0 \neq 0$. Then Γ contains a non-abelian free subgroup.

Proof. By Lemma 7 we have $z_0 \neq \pm 2 \sin \frac{k\pi}{l}$. Let us show that $G(z_0)$ is a non-elementary subgroup of $PSL_2(\mathbb{C})$. First, $G(z_0)$ is irreducible by Lemma 6 since

$$
\operatorname{tr} ABA^{-1}B^{-1} - 2 = z_0^2 - 4\sin^2\frac{k\pi}{l} \neq 0.
$$

Second, $G(z_0)$ is not a dihedral group since two of three numbers tr A, $tr B$, $tr AB$ are not equal to 0 (see [11]). Third, it follows from classification of finite subgroups of SLC [11] that $G(z_0)$ is infinite since it is irreducible and contains an element [B] of order > 5 . Thus, $G(z_0)$ (and consequently Γ) contains a non-abelian free subgroup. \Box

Bearing in mind Lemmas 7 and 8, we shall assume in what follows that

$$
f_{R,k}(z) = M_{R,k} z^s,\tag{11}
$$

where by lemma 4

$$
M_{R,k} = \prod_{i=1}^{s} P_{v_i-1}(2\cos\frac{k\pi}{l}) = (2\sin\frac{k\pi}{l})^{-s} \prod_{i=1}^{s} 2\sin\frac{v_i k\pi}{l}.
$$
 (12)

Lemma 9. In the following cases Γ contains a non-abelian free subgroup:

1) $l = 6$, s is odd and there exists i such that $v_i \in \{2, 3, 4\}$;

2) $l = 6$, s is even and either there exists i such that $v_i = 3$ or there exist i, j such that $i \neq j$ and $v_i, v_j \in \{2, 4\}$;

3) $l > 6$ and there exists i such that 6 divides v_i .

Proof. Let $f_{R,k}(z) = M_{R,k}z^s$ and ρ_{-k} be a representation defined by (10). Then

$$
g_k(x) = f_{R,k}(x+2\sin\frac{k\pi}{l}) = M_{R,k}(x+2\sin\frac{k\pi}{l}) = \text{tr}\,R(A, B_{-k}).\tag{13}
$$

Comparing constant terms in (13),we obtain

$$
\prod_{i=1}^{s} 2\sin\frac{v_i k\pi}{l} = 2\cos\frac{ls/2 - kV}{l}\pi.
$$
 (14)

1) If $l = 6$, $s = 2s_1 + 1$ then we set $k = 1$ and obtain $2 \cos \frac{6s_1 + 3 - V}{6} \pi =$ ± 1 since $(V, 6) = 1$. Suppose that there exists i such that $v_i \in \{2, 3, 4\}.$ Then there exists i such that 6 divides v_i .
 $z) = M_{R,k} z^s$ and ρ_{-k} be a representation defined b
 $v_i + 2 \sin \frac{k\pi}{l} = M_{R,k}(x + 2 \sin \frac{k\pi}{l}) = \text{tr } R(A, B_{-k})$

thant terms in (13), we obtain
 $\prod_{i=1}^s 2 \sin \frac{v_i k \pi}{l} = 2 \cos \frac{ks/2$

$$
\delta = P_{v_i - 1}(2\cos\frac{\pi}{6}) = \frac{2\sin v_i \pi/6}{2\sin \pi/6} \in \{\sqrt{3}, 2\}
$$

and we have from (14)

$$
\prod_{j=1}^{s} P_{v_j - 1}(2\cos\frac{\pi}{6}) = \delta \prod_{j \neq i} P_{v_j - 1}(2\cos\frac{\pi}{6}) = \pm 1.
$$
 (15)

It follows from (15) that $1/\delta \in \mathcal{O}$ which is a contradiction.

Tring in mind Lemmas 7 and 8, we shall assume in what follows
 $f_{R,k}(z) = M_{R,k}z^3$,

(11)

by lemma 4
 $M_{R,k} = \prod_{i=1}^{k} P_{\alpha_i-1}(2\cos\frac{k\pi}{l}) = (2\sin\frac{k\pi}{l})^{-s} \prod_{i=1}^{s} 2\sin\frac{nk\pi}{l}$. (12)

a). In the following cases Γ con 2) If $l = 6$ and $s = 2s_1$ then we set $k = 1$ and obtain $2\cos\frac{6s_1 - V}{6}\pi =$ ± $\sqrt{3}$ since $(V, 6) = 1$. First, suppose that there exists i such that $v_i = 3$. Then

$$
P_{v_i+1}(2\cos\frac{\pi}{6}) = \frac{2\sin v_i\pi/6}{2\sin\pi/6} = 2
$$

and we have from (14)

$$
\prod_{j=1}^{s} P_{v_j - 1}(2\cos(\frac{\pi}{6})) = 2 \prod_{j \neq i} P_{v_j - 1}(2\cos(\frac{\pi}{6})) = \pm \sqrt{3}.
$$
 (16)

It follows from (16) that $\sqrt{3}/2 \in \mathcal{O}$ which is a contradiction.

Now, suppose that there exists i, j such that $v_i, v_j \in \{2, 4\}$. For $r \in \{i, j\}$ we have

$$
P_{v_r-1}(2\cos\frac{\pi}{6}) = \frac{2\sin v_r \pi/6}{2\sin \pi/6} = \sqrt{3}.
$$

Hence by (14)

$$
\prod_{k=1}^{s} P_{v_k - 1}(2 \cos \frac{\pi}{6}) = 3 \prod_{k \neq i, k \neq j} P_{v_k - 1}(2 \cos \frac{\pi}{6}) = \pm \sqrt{3}.
$$
 (17)

It follows from (17) that $\sqrt{3}/3 \in \mathcal{O}$ which is a contradiction.

3) If $l \in \{12, 30\}$ then by assumptions of the lemma there exists i such that $v_i = 6$. Set $k = 1$. Then

\n We from (17) that
$$
\sqrt{3}/3 \in \mathcal{O}
$$
 which is a contradiction.\n If $l \in \{12, 30\}$, then by assumptions of the lemma.\n $v_i = 6$. Set $k = 1$. Then\n
$$
2 \sin \frac{v_i \pi}{l} = \n \begin{cases} \n 2, & \text{if } l = 12, \\
 \n 2 \sin \frac{\pi}{5} = \n \end{cases}
$$
\n

\n\n if $l = 12$, $l = 30$.\n
$$
l = 30
$$
.\n
$$
l = \frac{1}{2} \cos \frac{v_i \pi}{l} \quad \text{if } l = 30
$$
.\n
$$
l = \frac{1}{2} \cos \frac{1}{2} \cos \frac{1}{2} \cos \frac{1}{2} \sin \frac{1}{2
$$

In both cases $2\sin\frac{v_i\pi}{l} \notin \mathcal{O}^*$. On the other hand, $2\cos\frac{ls/2-V}{l}\pi \in \mathcal{O}^*$ by lemma (3) and (14) implies

$$
\frac{1}{2\sin\frac{v_i\pi}{l}}\quad \frac{1}{2\cos\frac{ls/2-V}{l}\pi}\prod_{j\neq i}2\sin\frac{v_j\pi}{l}\in\mathcal{O},
$$

which is a contradiction.

It follows from (16) that $\sqrt{3}/2 \in \mathcal{O}$ which is a contradiction.

Now, suppose that there exists i, j such that $v_i, v_j \in \{2, 4\}$. For $\epsilon \{i, j\}$ we have
 $P_{v_i-1}(2 \cos \frac{\pi}{6}) = \frac{2 \sin v_i \pi/6}{2 \sin \pi/6} = \sqrt{3}$.

Hence by (If $l = 60$ and there exists i such that $v_i = 30$ then we set $k =$ 1. As before we obtain from (14) that $2\sin\frac{v_i\pi}{60} = 2 \in \mathcal{O}^*$ which is a contradiction. If for any i we have $v_i \neq 30$ then we set $k = 2$ and obtain a contradiction in the same way as in the case $l = 30$. a contradiction in the same way as in the case $l = 30$.

Let A, B_k be matrices defined in (10), $W(A, B_k) = AB_k^{u_1} \dots AB_k^{u_s}$, where $0 < u_i < l$. A set (u_1, \ldots, u_s) will be considered as cyclically ordered. Let

$$
l_i = |\{j \mid u_j = i\}|, \qquad f_{i,j} = |\{r \mid u_r = i, u_{r+1} = j\}|. \tag{18}
$$

We have following equations:

$$
\sum_{i=1}^{l-1} l_i = s, \quad \sum_{i=1}^{l-1} f_{ij} = l_j, \quad \sum_{j=1}^{l-1} f_{ij} = l_i, \quad i, j = 1, \dots, l-1.
$$
 (19)

Lemma 10. Let $g(x) = \text{tr } W(A, B_t) = a_0 x^s + \cdots + a_s, h_i = P_{i-1}(\varepsilon^k +$ ε^{-k}). Then we have $a_0 = \prod_{j=1}^s h_{u_j}$ and

$$
f_{h} = \frac{1}{2} \int_{0}^{2\pi} f_{h} \left(\frac{1}{2} \right) \, dx \, dx
$$
\n
$$
= \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi} f_{h} \, dx
$$
\n
$$
= \frac{1}{2} \int_{0}^{2\pi} \int_{0}^{2\pi} \left(\frac{1}{2} \frac{
$$

This lemma can be proved by direct computations.

2.1. The case $l = 6$, s is odd.

Bearing in mind Lemma 9, we have $v_i \in \{1, 5\}$ for every i. Set $k = 1$ and $M_R = M_{R,1}$. Then $M_R = \prod_{i=1}^s P_{v_i-1}(2 \cos \frac{\pi}{6}) = 1$ since $P_0 = 1$ and $P_4(2\cos{\frac{\pi}{6}}) = \frac{2\sin{5\pi/6}}{2\sin{\pi/6}} = 1$. Consequently, 2n_i $i \neq j$ $n_i n_j$

can be proved by direct computations.

e $l = 6$, s is odd.

d Lemma 9, we have $v_i \in \{1, 5\}$ for every *i*. Set

i. Then $M_R = \prod_{i=1}^s P_{v_i-1}(2 \cos \frac{\pi}{6}) = 1$ since $P_0 = \frac{i n 5 \pi / 6}{\sin \pi / 6} = 1$. Conse

$$
f_R(z) = z^s. \tag{21}
$$

Consider a representation $\rho : F_2 \rightarrow \text{PSL}_2(\mathbb{C}), \ \rho(g) = A, \ \rho(h) = B_1,$ where A, B_1 are defined in (10). Then we have

$$
f_1(x) = \text{tr}\,R(A, B_1) = (x - 1)^s. \tag{22}
$$

Further, the equations (19) have the form

$$
f_{11} + f_{15} = l_1, \t f_{11} + f_{51} = l_1, \t l_1 + l_5 = s,
$$

$$
f_{55} + f_{15} = l_5, \t f_{55} + f_{51} = l_5.
$$
 (23)

It follows from (23) that $f_{15} = f_{51}$. Taking into account Lemma 10, we obtain that the coefficient by x^{s-2} of the polynomial $f_1(x)$ is equal to

$$
a_2 = f_{11}(l_1 - 2 + l_5\varepsilon^{-4}) + f_{15}(l_1 - 1 + (l_5 - 1)\varepsilon^{-4}) +
$$

\n
$$
f_{51}((l_1 - 1)\varepsilon^4 + l_5 - 1) + f_{55}(l_1\varepsilon^4 + l_5 - 2) -
$$

\n
$$
\frac{l_1(l_1 - 1)}{2} - \frac{l_5(l_5 - 1)}{2} + 2l_1l_5 = 3f_{15} + \frac{s^2}{2} - \frac{3}{2}s. \quad (24)
$$

On the other hand, $a_2 = s(s-1)/2$ by (22). Thus, we obtain

$$
s = 3f_{15}.\tag{25}
$$

Now, consider an epimorphic image $\Gamma_1 = \langle c_i d; c^2 = d^3 = R^2(c, d)$

1) of the group Γ , where $R(c, d) = cd^n$, ... cd^n , We can write the wo
 $R(c, d)$ from the free prototal $\langle c; c^2 = 1 \rangle * (d; d^2 = 1 \rangle$ in the form $R_1(c, d)$
 cd^n . Now, consider an epimorphic image $\Gamma_1 = \langle c, d; c^2 = d^3 = R^2(c, d) =$ 1) of the group Γ , where $R(c, d) = cd^{v_1} \dots cd^{v_s}$. We can write the word $R(c, d)$ from the free product $\langle c; c^2 = 1 \rangle * \langle d; d^3 = 1 \rangle$ in the form $R_1(c, d) =$ $cd^{u_1} \dots cd^{u_s}$, where $u_i =$ $\int 1$, if $v_i = 1$, 2, if $v_i = 5$. Let $U = \sum_{i=1}^{s} u_i$. Since $(V, 6)$ = 1, we have $(U, 3) = 1$. Set

$$
P(z) = Q_{R_1}(0, 1, z),
$$

where Q_{R_1} is a Fricke polynomial of R_1 .

Lemma 11. If the polynomial $P(z)$ has a root z_0 which is not equal to 0, $\pm 1, \pm \sqrt{2}, \frac{\pm 1 \pm \sqrt{5}}{2}$ $\frac{\pm\sqrt{5}}{2}$, $\pm\sqrt{3}$ then the group Γ_1 (and, consequently, Γ) contains a non-abelian free subgroup.

Proof. Let $X, Y \in SL_2(\mathbb{C})$ be matrices such that $\text{tr } X = 0$, $\text{tr } Y = 1$, tr $XY = z_0$. Let $H = \langle [X], [Y] \rangle \subset \text{PSL}_2(\mathbb{C})$. First, H is infinite (see [17]). Second, H is not dihedral group since $[Y]$ has order 3. Third, H is irreducible since $\text{tr} XYX^{-1}Y^{-1}$ $-2 = z_0^2 - 3 \neq 0$. Thus, H is a non-elementary subgroup of $PSL_2(\mathbb{C})$. Consequently, H contains a nonabelian free subgroup. $\sqrt{2}$, $\frac{\pm 1 \pm \sqrt{5}}{2}$, $\pm \sqrt{3}$ then the group Γ_1 (and, consequen
abelian free subgroup.
Let $X, Y \in SL_2(\mathbb{C})$ be matrices such that $\text{tr } X$
= z_0 . Let $H = \langle [X], [Y] \rangle \subset \text{PSL}_2(\mathbb{C})$ First, H
Second, H is

Since the polynomial $P(z)$ has integer coefficients and bearing in mind Lemma 11, we may assume that $P(z)$ has the form

$$
P(z) = z^{\alpha_1} (z^2 - 1)^{\alpha_2} (z^2 - 2)^{\alpha_3} (z^2 - z - 1)^{\alpha_4} (z^2 + z - 1)^{\alpha_5} (z^2 - 3)^{\alpha_6}.
$$
 (26)

Consider a representation $\delta : F_2 \to SL_2(\mathbb{C}), g \mapsto A, h \mapsto B_2$, where A, B_2 are defined in (10). We have tr $A = 0$, tr $B_2 = 1$, tr $AB_2 = x - \sqrt{3}$. Consequently,

$$
P_1(x) = \tau_{R_1}(0, 1, z)(\delta) = P(x - \sqrt{3}) = (x - \sqrt{3})^{\alpha_1}(x^2 - 2\sqrt{3}x + 2)^{\alpha_2}
$$

$$
\cdot (x^2 - 2\sqrt{3}x + 1)^{\alpha_3}(x^2 - (2\sqrt{3} + 1)x + 2 + \sqrt{3})^{\alpha_4}
$$

$$
\cdot (x^2 - (2\sqrt{3} - 1)x + 2 - \sqrt{3})^{\alpha_5}(x - 2\sqrt{3})^{\alpha_6}x^{\alpha_6} = \text{tr } R_1(A, B_2). \quad (27)
$$

The constant term of the polynomial $tr R_1(A, B_2)$ is equal to

$$
\varepsilon^{3s+2U} + \varepsilon^{-3s-2U} = 2\cos\frac{3s+2U}{6}\pi = \pm\sqrt{3}
$$

since s is odd and $(U, 3) = 1$. Comparing constant terms in (27), we obtain $\alpha_6 = 0$ and

$$
(-\sqrt{3})^{\alpha_1} 2^{\alpha_2} (2+\sqrt{3})^{\alpha_4} (2-\sqrt{3})^{\alpha_5} = \pm \sqrt{3}.
$$
 (28)

It follows from (28) that $\alpha_1 = 1$, $\alpha_2 = 0$, $\alpha_4 = \alpha_5$. Thus, the polynomial $P_1(x)$ has the form:

$$
P_1(x) = (x - \sqrt{3})(x^2 - 2\sqrt{3}x + 1)^{\alpha_3}(x^4 - 4\sqrt{3}x^3 + 15x^2 - 6\sqrt{3}x + 1)^{\alpha_4}.
$$
 (29)

In particular,

$$
2\alpha_3 + 4\alpha_4 + 1 = s.\t\t(30)
$$

It follows from (29) that the coefficient of $P_1(x)$ by x^{s-2} is equal to

$$
a_2 = \frac{3}{2}s^2 - \frac{5}{2}s + 1 + \alpha_4. \tag{31}
$$

On the other hand, we have by Lemma 10

$$
a_2 = f'_{11}(l'_1 - 2 + l'_2\varepsilon^{-2}) + f'_{12}(l'_1 - 1 + (l'_2 - 1)\varepsilon^{-2}) +
$$

\n
$$
f'_{21}((l'_1 - 1)\varepsilon^2 + l'_2 - 1) + f'_{22}(l'_1\varepsilon^2 + l'_2 - 2) +
$$

\n
$$
\frac{l'_1(l'_1 - 1)}{2} + \frac{l'_2(l'_2 - 1)}{2} + 2l'_1l'_2 = f'_{12} + \frac{3}{2}s^2 - \frac{5}{2}s, \quad (32)
$$

\nhere $f'_{11} = f_{11}, f'_{12} = f_{15}, f'_{21} = f_{51}, f'_{22} = f_{55}, l'_1 = l_1, l'_2 = l_5.$ It
\nllows from (31), (32) that
\n $f_{15} = 1 + \alpha_4$
\n $f_{15} = 1 + \alpha_4$
\n(33)
\nquations (25), (30), and (33) imply
\n $2\alpha_3 + \frac{s}{3} - 3 = 0.$
\n(34)
\n $\text{nce } \alpha_3 \ge 0$, it follows from (34) that $\frac{s}{3} - 3 \le 0$, that is, $s \le 9$. Thus, if
\n > 9 then either $f_R(z)$ is not of the form (21) or $P(z)$ is not of the form
\n(6). Bearing in mind lemmas 8 and 11, we obtain that if $l = 6$, s is odd
\nand $s > 9$ then Γ contains a non-abelian free subgroup.

where $f'_{11} = f_{11}$, $f'_{12} = f_{15}$, $f'_{21} = f_{51}$, $f'_{22} = f_{55}$, $l'_{1} = l_{1}$, $l'_{2} = l_{5}$. It follows from (31), (32) that

$$
f_{15} = 1 + \alpha_4 \tag{33}
$$

Equations (25) , (30) , and (33) imply

$$
2\alpha_3 + \frac{s}{3} - 3 = 0. \tag{34}
$$

Since $\alpha_3 \ge 0$, it follows from (34) that $\frac{s}{3} - 3 \le 0$, that is, $s \le 9$. Thus, if $s > 9$ then either $f_R(z)$ is not of the form (21) or $P(z)$ is not of the form (26). Bearing in mind lemmas 8 and 11, we obtain that if $l = 6$, s is odd and $s > 9$ then Γ contains a non-abelian free subgroup.

as from (28) that $\alpha_1 = 1$, $\alpha_2 = 0$, $\alpha_4 = \alpha_5$. Thus, the polynomial
as the form:
 $= (x-\sqrt{3})(x^2-2\sqrt{3}x+1)^{c_3}(x^4-4\sqrt{3}x^3+15x^2-6\sqrt{3}x+1)^{c_4}$. (29)
icular,
 $2\alpha_3 + 4\alpha_4 + 1 = s$. (30)
tendar,
 $2\alpha_3 + 4\alpha_4 + 1 = s$. Now, let $s \leq 9$. Since $s > 4$, s is odd and $s = 3f_{15}$ by (25), we must have $s = 9$, $f_{15} = 3$. Furthermore, without loss of generality we can assume $l_1 > l_5$. Moreover, one can cyclically shift the sequence (v_1, \ldots, v_s) . This transformation replaces the relation $R^2(a, b)$ with an equivalent one. It is easy to see that there exists only 9 words R under these conditions:

$$
R_1 = ababababab^5abab^5abab^5, \t R_2 = abababab^5ababab^5abab^5,
$$

\n
$$
R_3 = abababab^5abab^5ababab^5,
$$

\n
$$
R_4 = abababab^5abab^5abab^5,
$$

\n
$$
R_5 = abababab^5abab^5abab^5ab^5,
$$

\n
$$
R_6 = abababab^5abab^5abab^5,
$$

\n
$$
R_7 = ababab^5ab^5ababab^5abab^5,
$$

\n
$$
R_8 = ababab^5ab^5ababab^5,
$$

\n
$$
R_9 = ababab^5ababab^5abab^5ab^5.
$$

\n(35)
\n
$$
R_8 = ababab^5ababab^5,
$$

\n(36)
\n
$$
R_9 = ababab^5ababab^5abab^5.
$$

Direct computations show that $f_{R_i}(z) \neq z^9$ for $i = 1, ..., 7$. But

$$
f_{R_8}(z) = f_{R_9}(z) = z^9.
$$

Since $R_9(a, b)$ is conjugate to $R_8(a^{-1}, b^{-1})^{-1}$, it is sufficient to consider only the group $\Gamma = \langle a, b; a^2 = b^6 = R_8^2(a, b) = 1 \rangle$.

Lemma 12. The group Γ contains a non-abelian free subgroup.

Proof. Consider a dihedral group $D_3 = \langle c, d; c^2 = d^2 = (cd)^3 = 1 \rangle$ of order 6 and a homomorphism

$$
\psi: \Gamma \to D_3, \qquad a \mapsto c, \ b \mapsto d.
$$

Obviously, $\psi(R_8) = 1$, that is, ψ is well defined and ψ is an epimorphism. Let $\Gamma_1 = \ker \psi \subset \Gamma$. Then $[\Gamma : \Gamma_1] = 6$. Using Reidemeister–Schreier rewriting process, we obtain that Γ_1 has a presentation of the form

$$
\Gamma_1 = \langle g_1, g_2, g_3, g_4; g_1^3 = g_2^3 = (g_3 g_4)^3 = (g_3^2 g_4^{-1})^2 =
$$

$$
(g_3^{-1} g_4^2)^2 = W_1^2(g_1, g_2, g_4) = W_1^2(g_2, g_1, g_3) =
$$

$$
W_2^2(g_1, g_2, g_3) = W_2^2(g_2, g_4, g_1) = 1 \rangle, \quad (36)
$$

where $W_1(g, h, t) = tgh^2tgh^2th^2$, $W_2(g, h, t) = t^{-1}gt^{-1}gt^{-1}gh^2$.

To prove Lemma 12, it is sufficient to construct a representation δ : $\Gamma_1 \to \text{PSL}_2(\mathbb{C})$ such that the group $\delta(\Gamma_1)$ is a non-elementary subgroup of $PSL_2(\mathbb{C})$. Let us consider matrices

Direct computations show that
$$
f_{R_i}(z) \neq z^9
$$
 for $i = 1, ..., 7$. But
\n $f_{R_8}(z) = f_{R_9}(z) = z^9$.
\nSince $R_9(a, b)$ is conjugate to $R_8(a^{-1}, b^{-1})^{-1}$, it is sufficient to consid
\nonly the group $\Gamma = \langle a, b, a^2 = b^6 = R_8^2(a, b) = 1 \rangle$.
\n**Lemma 12.** The group Γ contains a non-abelian free subgroup.
\nProof. Consider a dihedral group $D_3 = \langle c, d; c^2 = d^2 = (cd)^3 = 1 \rangle$
\norder 6 and a homomorphism
\n $\psi : \Gamma \rightarrow D_3$, $a \mapsto c, b \mapsto d$.
\nObviously, $\psi(R_8) = 1$, that is, ψ is well defined and ψ -is an epimorphism
\nLet $\Gamma_1 = \ker \psi \subset \Gamma$. Then $[\Gamma : \Gamma_1] = 6$. Using Reidemeister–Schrei
\nrewriting process, we obtain that Γ_1 has a presentation of the form
\n $\Gamma_1 = \langle g_1, g_2, g_3, g_4; g_1^3 = g_2^3 = (g_3g_4)^3 - (g_3^2g_4^{-1})^2 =$
\n $(g_3^{-1}g_4^2)^2 = W_1^2(g_1, g_2, g_1) = W_1^2(g_2, g_1, g_3) =$
\n $W_2^2(g_1, g_2, g_3) = W_2^2(g_2, g_4, g_1) = 1 \rangle$, (3
\nwhere $W_1(g, h, t) = tgh^2tgh^2th^2$. $W_2(g, h, t) = t^{-1}gt^{-1}gt^{-1}gh^2$.
\nTo prove Lemma 12, it is sufficient to construct a representation ℓ
\n $\Gamma_1 \rightarrow \text{PSL}_2(\mathbb{C})$. Let us consider matrices
\n $A_1 = \begin{pmatrix} x_1 & -x_1^2+x_1-1 \\ y_1 & 1-x_1 \end{pmatrix}$, $A_3 = \begin{pmatrix} i & -1 \\ 0 & -i \end{pmatrix}$,

Then we have $\text{tr } A_1 = \text{tr } A_2 = \text{tr } A_3 A_4 = 1$, $\text{tr } A_3^2 A_4^{-1} = \text{tr } A_3^{-1} A_4^2 = 0$. Therefore,

$$
[A_1]^3 = [A_2]^3 = ([A_3][A_4])^3 = ([A_3]^2 [A_4]^{-1})^2 = ([A_3]^{-1} [A_4])^2 = 1
$$

by Lemma 1. Let us suppose that the following conditions hold:

$$
\text{tr}\,A_1A_3 = \text{tr}\,A_2A_4 = \sqrt{2}, \qquad \text{tr}\,A_2A_3 = \text{tr}\,A_1A_4,\tag{37}
$$

tr
$$
W_1(A_1, A_2, A_4) = \text{tr } W_1(A_2, A_1, A_3) =
$$

tr $W_2(A_1, A_2, A_3) = \text{tr } W_2(A_2, A_4, A_1) = 0$ (38)

It follows from (37) that

$$
x_2 = \frac{3x_1^2 + (-2 + 3i\sqrt{2})x_1 - i\sqrt{2} - 4/3}{2x_1 + i\sqrt{2} - 1}, \qquad y_1 = 2ix_1 - \sqrt{2} - i,
$$

$$
y_2 = \frac{3ix_1^2 - (2\sqrt{2} + 3i)x_1 + \sqrt{2} + i/3}{2x_1 + i\sqrt{2} - 1}.
$$
 (39)

Substituting (39) in (38), one obtains

$$
\text{tr}\,W_1(A_1, A_2, A_4) = \text{tr}\,W_1(A_2, A_1, A_3) = \frac{h_1(x_1)}{(2x_1 + i\sqrt{2} - 1)^4},
$$
\n
$$
\text{tr}\,W_2(A_1, A_2, A_3) = \text{tr}\,W_2(A_2, A_4, A_1) = \frac{h_2(x_1)}{(2x_1 + i\sqrt{2} - 1)^2},\tag{40}
$$

where

follows from (37) that
\n
$$
x_2 = \frac{3x_1^2 + (-2+3i\sqrt{2})x_1 - i\sqrt{2} - 4/3}{2x_1 + i\sqrt{2} - 1},
$$
\n
$$
y_2 = \frac{3ix_1^2 - (2\sqrt{2} + 3i)x_1 + \sqrt{2} + i/3}{2x_1 + i\sqrt{2} - 1}.
$$
\n(39)
\nabstituting (39) in (38), one obtains
\n
$$
\text{tr } W_1(A_1, A_2, A_4) = \text{tr } W_1(A_2, A_1, A_3) = \frac{h_1(x_1)}{(2x_1 + i\sqrt{2} - 1)^4},
$$
\n
$$
\text{tr } W_2(A_1, A_2, A_3) = \text{tr } W_2(A_2, A_4, A_1) = \frac{h_2(x_1)}{(2x_1 + i\sqrt{2} - 1)^2},
$$
\n(40)
\nwhere
\n
$$
h_1(x_1) = -24i + \frac{137\sqrt{2}}{9} - \left(\frac{184i}{3} + \frac{424\sqrt{2}}{3}\right)x_4 + \left(\frac{1790i}{3} + 22\sqrt{2}\right)x_1^2 +
$$
\n
$$
(-329i + 683\sqrt{2})x_1^3 - (975i + 446\sqrt{2})x_4^4 + (648i - 420\sqrt{2})x_1^5 +
$$
\n
$$
(198i + 261\sqrt{2})x_1^6 + (108i + 18\sqrt{2})x_1^7 - 9\sqrt{2}x_1^8,
$$
\n
$$
h_2(x_1) = 3\sqrt{2} + 4i/3 + (4\sqrt{2} - 16i)x_1 + (-10\sqrt{2} + 18i)x_1^2 + (-9\sqrt{2} + 3i)x_1^3 - 3ix_1^4.
$$
\n(99)
\n
$$
h_2(x_1) = 3\sqrt{2} + 4i/3 + (4\sqrt{2} - 16i)x_1 + (-10\sqrt{2} + 18i)x_1^2 + (-9\sqrt{2} + 3i)x_1^3 - 3ix_1^4.
$$
\n(198)
\n<

$$
h_2(x_1) = 3\sqrt{2} + 4i/3 + (4\sqrt{2} - 16i)x_1 + (-10\sqrt{2} + 18i)x_1^2 + (-9\sqrt{2} + 3i)x_1^3 - 3ix_1^4.
$$

One can check that h_2 devides h_1 . Let x'_1 be a roort of the equation $h_2(x_1) = 0$ and let x'_2, y'_1, y'_2 be defined by (39). Then the set $\{x'_1, x'_2, y'_1, y'_2\}$ is a solution of equations (37), (38). Hence, matrices A_1, A_2, A_3, A_4 define a required representation

$$
\delta: \Gamma_1 \to \mathrm{PSL}_2(\mathbb{C}), \qquad \delta(g_i) = [A_i], \ i = 1, 2, 3, 4.
$$

Let us show that $\delta(\Gamma_1)$ is a non-elementary subgroup of PSL₂(C). Consider a subgroup $G = \langle [A_1A_3], [A_2A_4] \rangle \subset \delta(\Gamma_1)$. By construction, we have tr $A_1A_3 = \text{tr } A_2A_4 = \sqrt{2}$. Next,

$$
\operatorname{tr} A_1 A_3 A_2 A_4 = \frac{h_3(x_1')}{(2x_1' + i\sqrt{2} - 1)^2} = \Delta,
$$

where

$$
h_3(x_1') = -3x_1'^4 + (6 - 6\sqrt{2}i)x_1'^3 + (11 - 9\sqrt{2}i)x_1'^2 + (-14 + 5\sqrt{2}i)x_1' - 4\sqrt{2}i - 1/3.
$$

Direct computations show that $\Delta \notin \{0, 1, 2\}$. By Lemma 6, G is irreducible and infinite (see [17]). Obviously, G is not a dihedral group. Therefore, G (and consequently Γ_1) is a non-elementary subgroup of $PSL_2(\mathbb{C})$.

2.2. The case $l = 6$, s is even.

Since $(6, u) = 1$ and bearing in mind Lemma 9, we can assume without loss of generality that

$$
R = ab^{v_1} \dots ab^{v_s},
$$

Direct computations show that $\Delta \neq \{0,1,2\}$. By Lemma 6, G is inducible and infinite (see [17]). Obviously, G is not a dihedral group Therefore, G (and consequently Γ_1) is a non-elementiary side
group TSL2(C) where $v_1 \in \{2, 4\}, v_i \in \{1, 5\}$ for $i = 2, ..., s$. Moreover, we can assume that $v_1 = 2$ applying otherwise to the word R an automorphism $b \mapsto b^{-1}$ of a cyclic group $\langle b; b^2 = 1 \rangle$. Thus, $M_R = \prod_{i=1}^s P_{v_i-1}(2 \cos \frac{\pi}{6}) = \sqrt{3}$ since $P_0 = 1, P_4(2\cos{\frac{\pi}{6}}) = \frac{2\sin(5\pi/6)}{2\sin(\pi/6)} = 1, \text{ and } P_1(2\cos{\frac{\pi}{6}}) = 2\cos(\frac{\pi}{6}) = \sqrt{3}.$ Taking into account Lemma $8'$, we shall assume that = 2 applying otherwise to the word *R* an automo:

clic group $\langle b; b^2 = 1 \rangle$. Thus, $M_R = \prod_{i=1}^s P_{v_i} \triangleq 1$ (2co,
 $P_4(2 \cos \frac{\pi}{6}) = \frac{2 \sin(5\pi/6)}{2 \sin(\pi/6)} = 1$, and $P_1(2 \cos \frac{\pi}{6}) =$

into account Lemma 8, we shall assume

$$
f_R(z)=\sqrt{3}z^s.
$$

Further, the equations (19) have the form

$$
f_{11} + f_{12} + f_{15} = l_1, \n f_{15} + f_{25} + f_{55} = l_5, \n f_{12} + f_{52} = 1, \n l_1 + l_5 = s
$$
\n
$$
f_{51} + f_{52} + f_{55} = l_5, \n f_{21} + f_{25} = 1, \n (41)
$$

It follows from (41) that

$$
f_{11} = l_1 - f_{12} - f_{15}, \t f_{55} = s - l_1 - 2 - f_{15} + f_{21}, \t f_{25} = 1 - f_{21}, f_{51} = f_{12} + f_{15} - f_{21}, \t l_5 = s - l_1 - 1, \t f_{52} = 1 - f_{12}. \t(42)
$$

Consider a representation $\rho : F_2 \to \text{PSL}_2(\mathbb{C}), \rho(g) = A, \rho(h) = B_1,$ where A and B_1 are defined by (10). Then we have

$$
f_1(x) = \text{tr } R(A, B_1) = \sqrt{3}(x - 1)^s. \tag{43}
$$

Bearing in mind Lemma 10 and (42), we obtain that the coefficient by x^{s-2} of the polynomial $f_1(x)$ is equal to

$$
a_2 = \sqrt{3} \left(\frac{1}{2} s^2 + \frac{1}{2} s + 2 - 2f_{21} + f_{12} + 3f_{15} \right). \tag{44}
$$

On the other hand, $a_2 = \sqrt{3}s(s-1)/2$. Thus, we obtain

$$
s + 2f_{21} - f_{12} - 3f_{15} - 2 = 0.
$$
 (45)

Now, consider an epimorphic image Γ_1 of the group Γ :

$$
\Gamma_1 = \langle c, d; c^2 = d^3 = R^2(c, d) = 1 \rangle,
$$

v, consider an epimorphic image Γ_1 of the group Γ_1
 $\Gamma_1 = \langle a, d; c^2 = d^3 = R^2(c, d) = 1 \rangle$,
 $R(c, d) = cd^{12} \dots cd^{p_2}$. We can write the word $R(c, d)$ from the

dulut $(c; c^2 = 1) * \langle d; d^3 = 1 \rangle$ in the form $R_1(c, d) = cd^{p_1} \dots cd^{$ where $R(c, d) = cd^{v_1} \dots cd^{v_s}$. We can write the word $R(c, d)$ from the free product $\langle c; c^2 = 1 \rangle * \langle d; d^3 = 1 \rangle$ in the form $R_1(c, d) = cd^{u_1} \dots cd^{u_s}$, where $u_i =$ $\int 1$, if $v_i = 1$, 2, if $v_i = 5$ or $v_i = 2$. Let $U = \sum_{i=1}^{s} u_i$. Since $(V, 6) = 1$, we have $(U, 3) = 1$. Set

$$
P(z) = Q_{R_1}(0, 1, z),
$$

where Q_{R_1} is a Fricke polynomial of R_1 . Since the polynomial $P(z)$ has integer coefficients and bearing in mind Lemma 11, we can assume that $P(z)$ has the form

$$
P(z) = \sqrt{3}z^{\alpha_1}(z^2 - 1)^{\alpha_2}(z^2 - 2)^{\alpha_3}(z^2 - z - 1)^{\alpha_4}(z^2 + z - 1)^{\alpha_5}(z^2 - 3)^{\alpha_6}.
$$
 (46)

Consider a representation $\delta : F_2 \to SL_2(\mathbb{C})$, $g \mapsto A$, $h \mapsto B_2$. We have tr $A = 0$, tr $B_2 = 1$, tr $AB_2 = x - \sqrt{3}$. Consequently,

here
$$
Q_{R_1}
$$
 is a Fricke polynomial of R_1 . Since the polynomial $P(z)$ has
teger coefficients and bearing in mind Lemma 11, we can assume that
(z) has the form

$$
P(z) = \sqrt{3}z^{\alpha_1}(z^2-1)^{\alpha_2}(z^2-2)^{\alpha_3}(z^2-z-1)^{\alpha_4}(z^2+z-1)^{\alpha_5}(z^2-3)^{\alpha_6}.
$$
 (46)
Consider a representation $\delta : F_2 \to SL_2(\mathbb{C}), g \mapsto A, h \mapsto B_2$. We
we tr $A = 0$, tr $B_2 = 1$, tr $AB_2 = x - \sqrt{3}$. Consequently,

$$
P_1(x) = Q_{R_1}(0, 1, z)(\delta) = P(x - \sqrt{3}) = (x - \sqrt{3})^{\alpha_1}(x^2 - 2\sqrt{3}x + 2)^{\alpha_2}
$$

$$
\cdot (x^2 - 2\sqrt{3}x + 1)^{\alpha_3}(x^2 - (2\sqrt{3} + 1)x + 2 + \sqrt{3})^{\alpha_4}
$$

$$
\cdot (x^2 - (2\sqrt{3} - 1)x + 2 - \sqrt{3})^{\alpha_5}(x - 2\sqrt{3})^{\alpha_6}x^{\alpha_6} = \text{tr } R_1(A, B_2).
$$
 (47)
The constant term of the polynomial tr $R_1(A, B_2)$ is equal to

$$
\varepsilon^{3s+2U} + \varepsilon^{-3s-2U} = 2\sin(\frac{3s+2U}{6}\pi) = \pm 1
$$

nce s is even and $(U, 3) = 1$. Comparing constant terms in (47), we

The constant term of the polynomial $tr R_1(A, B_2)$ is equal to

$$
\varepsilon^{3s+2U} + \varepsilon^{-3s-2U} = 2\sin(\frac{3s+2U}{6}\pi) = \pm 1
$$

since s is even and $(U, 3) = 1$. Comparing constant terms in (47), we obtain $\alpha_6 = 0$ and

$$
(-\sqrt{3})^{\alpha_1} 2^{\alpha_2} (2+\sqrt{3})^{\alpha_4} (2-\sqrt{3})^{\alpha_5} = \pm 1.
$$
 (48)

It follows from (48) that $\alpha_1 = \alpha_2 = 0$, $\alpha_4 = \alpha_5$. Thus, the polynomial $P_1(x)$ has the form:

$$
P_1(x) = (x^2 - 2\sqrt{3}x + 1)^{\alpha_3}(x^4 - 4\sqrt{3}x^3 + 15x^2 - 6\sqrt{3}x + 1)^{\alpha_4}.
$$
 (49)

In particular,

$$
2\alpha_3 + 4\alpha_4 = s.\t\t(50)
$$

By (49), the coefficient of $P_1(x)$ by x^{s-2} is equal to

$$
a_2 = \frac{3}{2}s^2 - \frac{5}{2}s + \alpha_4. \tag{51}
$$

On the other hand, we have by Lemma 10

$$
a_2 = f'_{11}(l'_1 - 2 + l'_2\varepsilon^{-2}) + f'_{12}(l'_1 - 1 + (l'_2 - 1)\varepsilon^{-2}) + f'_{21}((l'_1 - 1)\varepsilon^2 + l'_2 - 1) +
$$

$$
f'_{22}(l'_1\varepsilon^2 + l'_2 - 2) + \frac{l'_1(l'_1 - 1)}{2} + \frac{l'_2(l'_2 - 1)}{2} + 2l'_1l'_2, \quad (52)
$$

where $f'_{11} = f_{11}$, $f'_{12} = f_{15} + f_{12}$, $f'_{21} = f_{51} + f_{21}$, $f'_{22} = f_{55} + f_{25}$, $l'_{1} = l_{1}$, $l'_2 = l_5 + 1$. It follows from (52) that

$$
a_2 = \frac{3}{2}s^2 - \frac{5}{2}s + f_{12} + f_{15}.
$$
 (53)

We obtain from (51), (53) that

$$
f_{12} + f_{15} - \alpha_4 = 0. \tag{54}
$$

Now, equations (45) , (50) , (54) implies that

$$
f_{21} = 1 - \alpha_3 - \frac{1}{2} f_{15} - \frac{3}{2} f_{12}.
$$
 (55)

Since $f_{21} \geq 0$, it follows from (55) that there exist only three possibilities.

1. $a_3 = 1$, $f_{15} = f_{12} = 0$. Then $a_4 = 0$ and $s = 2$ which is a contradiction.

2. $a_3 = 0, f_{15} = f_{12} = 0$. Hence, $a_4 = 0$ and $s = 0$. This is a contradiction.

On the other hand, we have by Lemma 10
 $a_2 = f'_{11}(l'_1 - 2 + l'_2 \varepsilon^{-2}) + f'_{12}(l'_1 - 1 + (l'_2 - 1)\varepsilon^{-2}) + f'_{21}((l'_3 - 1)\varepsilon^2 + l'_2 - 1)$
 $f'_{22}(l'_1\varepsilon^2 + l'_2 - 2) + \frac{l'_1(l'_1 - 1)}{2} + \frac{l'_2(l'_2 - 1)}{2} + 2l'_1l'_2,$ (5)

where $f'_{11} = f_{11}, f'_{$ 3. $a_3 = 0, f_{15} = 2, f_{12} = f_{21} = 0$, so that $a_4 = 2$ and $s = 8$. Direct computations show that there are no words $R(a, b)$ under our conditions such that $f_R(z) = \sqrt{3}z^8$. Thus Theorem 1 is proved in the case $l = 6$ and s is even. For (51) , (53) that
 $f_{12} + f_{15} - \alpha_4 = 0$.

quations (45), (50) , (54) implies that
 $f_{21} = 1 - \alpha_3 - \frac{1}{2}f_{15} - \frac{3}{2}f_{12}$.
 $f_{21} \ge 0$, it follows from (55) that there exist only the
 $a_3 = 1$, $f_{15} = f_{12} =$

2.3. The case $l >$

Let Γ be a group defined by (8). Taking into account Lemma 9, we can assume that 6 do not divide v_i for any i. Let us consider the epimorphic image $Γ_1$ of Γ:

$$
\Gamma_1 = \langle c, d; c^2 = d^6 = R^2(c, d) = 1 \rangle,
$$

where $R(c, d) = cd^{v_1} \dots cd^{v_s}$. Since $6 \nmid v_i$ for any i, the word $R(c, d)$ from the free product $\langle c; c^2 = 1 \rangle * \langle d; d^6 = 1 \rangle$ can be written in the form $R(c, d) = cd^{u_1} \dots cd^{u_s}$ with $0 < u_i < 6$ and $u_i \equiv u \pmod{6}$. We have already proved that Γ_1 contains a non-abelian free subgroup. Theorem 1 is proved.

3. Proof of Theorem 2

3.1. The case V is even.

Let us consider an epimorphism

$$
\varphi : \Gamma \to \langle c; c^2 = 1 \rangle, \quad \varphi(a) = 1, \varphi(b) = c.
$$

Since $\varphi(R(a, b)) = 1$, we obtain using Reidemeister–Schreier rewriting process that ker φ has a representation of the form

$$
\ker \varphi = \langle g_1, g_2, g_3; g_1^3 = g_2^3 = g_3^2 = R_1^2(g_1, g_2, g_3) = R_2^2(g_1, g_2, g_3) = 1 \rangle,
$$

where R_1 and R_2 is a rewriting of R. Let $F_3 = \langle g, h, t \rangle$ be a free group and $X(F_3)$ be the corresponding character variety. Consider a subvariety $W \subset X(F_3)$ defined by equations

$$
\tau_g = \tau_h = 1, \quad \tau_t = \tau_{R_1(g,h,t)} = \tau_{R_2(g,h,t)} = 0.
$$

FORD OF Theorem 2

The case V is even.

consider an epinnorphism
 $\varphi: \Gamma \to (c; c^2 - 1), \quad \varphi(a) = 1, \varphi(b) = c,$
 $\varphi(R(a, b)) = 1$, we obtain using Reidemeister Schreier fewriting

that ker φ has a representation of the form
 It is easy to see that $W \neq \emptyset$. Indeed, by [1] for any generalized triangle group $T(n, m, l, R)$ there exists a special representation ρ of $T(n, m, l, R)$ into $PSL_2(\mathbb{C})$, that is, a representation such that elements $\rho(a), \rho(b)$ and $\rho(R)$ have orders n, m, l respectively. Let ρ be a special representation of Γ into $PSL_2(\mathbb{C})$ and $\rho(g_1) = [A], \rho(g_2) = [B], \rho(g_3) = [C]$. We can choose matrices A, B such that $\text{tr} A = \text{tr} B = 1$. Then we shall have $\pi(A, B, C) \in W$, where π is defined by (3), so that $W \neq \emptyset$. *l*₂ is a rewriting of *R*. Let *F*₃ = $\langle g, h, t \rangle$ be a free
he corresponding character variety. Consider a sub-
ined by equations
 $= \tau_h = 1, \quad \tau_t = \tau_{R_1(g,h,t)} = \tau_{R_2(g,h,t)} = 0.$
that *W* ≠ ∅. Indeed, by [1] for any gener

Let W_1, \ldots, W_r be irreducible components of W. Since dim $X(F_3)$ = 6 and the subvariety $\emptyset \neq W \subset X(F_3)$ is defined by five equations, for any component W_i we must have dim $W_i \geq 1$.

Lemma 13. $U_i = W_i \cap X^s(F_3) \neq \varnothing$.

Proof. Suppose that $U_i = \emptyset$ for some i. Then for any point $\rho =$ $(A, B, C) \in \pi^{-1}(W_i)$ a group $\langle A, B, C \rangle$ is reducible. Without loss of generality we may assume that A, B, C are upper triangular matrices. Since A, B, C have finite orders, for any $S \in F_3$ the trace tr $S(A, B, C) = \tau_S(\rho)$ can take only finite set of values, when $\rho \in \pi^{-1}(W_i)$. Hence, dim $W_i = 0$ which is a contradiction.

Let $\alpha_i : W_1 \to \mathbb{A}^1$ be a projection to the *i*-th coordinate. Since $\dim W_i \geq 1$, there exists i such that α_i is dominant. Let, for example, the projection α on the coordinate τ_{gh} is dominant, so that $\alpha(U_1)$ is dense in \mathbb{A}^1 in Zarisski topology. Hence, we can choose a transcendental number $\beta \in \mathbb{C}$ such that $\beta \in \alpha(U_1)$. Let $u \in \alpha^{-1}(\beta) \cap U_1$ and $(A, B, C) \in \pi^{-1}(u)$. By construction, we have $tr A = tr B = 1$, $tr C = tr R_1(A, B, C)$ ${\rm tr} R_2(A, B, C) = 0.$

Let $G = ([A],[B],[C])$. Let us show that \tilde{G} is a non-element
subgroup of PSL₂(C). First, G is irreducible by consideration. Second,
is infinite since $\text{tr} HB = \beta$ is a transcurdential number so that a matrix
order 3.
All has infinite order. Third, G is not a differential group since $[A]$ h
over 14.4. We have by construction
 $[A]^3 = [B]^3 = [C]^2 = R_1^2([A],[B],[C]) = R_2^2([A],[B],[C]) = 1$.
Hence, G is an epimorphic image of ker φ Let $G = \langle [A], [B], [C] \rangle$. Let us show that G is a non-elementary subgroup of $PSL_2(\mathbb{C})$. First, G is irreducible by construction. Second, G is infinite since $\text{tr } AB = \beta$ is a transcendental number, so that a matrix AB has infinite order. Third, G is not a dihedral group since $[A]$ has order 3.

Next, we have by construction

$$
[A]^3 = [B]^3 = [C]^2 = R_1^2([A], [B], [C]) = R_2^2([A], [B], [C]) = 1.
$$

Hence, G is an epimorphic image of ker φ . Thus, ker φ contains a nonabelian free subgroup as required.

3.2. The case s is even.

Without loss of generality we can assume that V is odd. Set

$$
f_R(z) = Q_R(1, \sqrt{2}, z),
$$

where Q_R is the Fricke polynomial of the word $R = g^{u_1}h^{v_1} \dots g^{u_s}h^{v_s} \in F_2$. The leading coefficient of $F_R(z)$ is equal to

$$
M_s = \prod_{i=1}^s P_{u_i-1}(1) P_{v_i-1}(\sqrt{2}) = (\sqrt{2})^t,
$$

where t is a number of i such that $v_i = 2$.

Lemma 14. Let us suppose that the polynomial $f_R(z)$ has a root $z_0 \notin$ $\{0, \sqrt{2}, \frac{\sqrt{2} \pm \sqrt{6}}{2}$ $\frac{\pm \sqrt{6}}{2}$. Then Γ contains a non-abelian free subgroup. The case *s* is even.

at loss of generality we can assume that *V* is odd.
 $f_R(z) = Q_R(1, \sqrt{2}, z),$
 Q_R is the Fricke polynomial of the word $R = g^{u_1}h^{v_1}$

ading coefficient of $F_R(z)$ is equal to
 $M_s = \prod_{i=1}^s P_{u_i-1}(1)$

Lemma 14 can be proved in the same way as Lemma 8.

Bearing in mind Lemma 14, we may assume that the polynomial $f_R(z)$ has the form

$$
f_R(z) = M_s z^{a_1} (z - \sqrt{2})^{a_2} (z - \frac{\sqrt{2} + \sqrt{6}}{2})^{a_3} (z - \frac{\sqrt{2} - \sqrt{6}}{2})^{a_4}.
$$
 (56)

Let ε be a primitive root of unity of degree 24, $F_2 = \langle g, h \rangle$ be a free group. Consider a representation $\rho : F_2 \to SL_2(\mathbb{C})$ defined by

$$
\rho(g) = A = \begin{pmatrix} \varepsilon^4 & 0 \\ 1 & \varepsilon^{-4} \end{pmatrix}, \qquad \rho(h) = B = \begin{pmatrix} \varepsilon^3 & x \\ 0 & \varepsilon^{-3} \end{pmatrix}.
$$

Then tr A = 1, tr B = $\sqrt{2}$, tr AB = $x + 2\cos(\frac{7\pi}{12}) = x - \frac{\sqrt{6}-\sqrt{2}}{2}$ $\frac{-\sqrt{2}}{2}$ and we have from (56)

$$
f_1(x) = f_R(z)(\rho) = \text{tr } R(A, B) = f_R(x - \frac{\sqrt{6} - \sqrt{2}}{2}) =
$$

$$
(\sqrt{2})^t (x - \frac{\sqrt{6} - \sqrt{2}}{2})^{a_1} (x - \frac{\sqrt{6} + \sqrt{2}}{2})^{a_2} (x - \sqrt{6})^{a_3} x^{a_4}.
$$
 (57)

The free coefficient of $tr R(A, B)$ is equal to

$$
\varepsilon^{4U+3V} + \varepsilon^{-4U-3V} = 2\cos(\frac{4U+3V}{12}\pi),\tag{58}
$$

where $U = \sum_{i=1}^{s} u_i$. Bearing in mind our assumptions, $2\cos(\frac{4U+3V}{12}\pi)$ can take only the following values:

$$
\pm (\frac{\sqrt{6}-\sqrt{2}}{2})^{\pm 1}, \pm \sqrt{2}.
$$
 (59)

Then it follows from (57) that $a_4 = 0$.

Analogously, considering a representation $\rho_1 : F_2 \to SL_2(\mathbb{C})$ defined by

$$
\rho(g) = A = \begin{pmatrix} \varepsilon^4 & 0 \\ 1 & \varepsilon^{-4} \end{pmatrix}, \qquad \rho(h) = B_1 = \begin{pmatrix} \varepsilon^{-3} & x \\ 0 & \varepsilon^3 \end{pmatrix},
$$

we obtain $a_3 = 0$. Thus,

$$
f_1(x) = (\sqrt{2})^t (x - \frac{\sqrt{6} - \sqrt{2}}{2})^{a_1} (x - \frac{\sqrt{6} + \sqrt{2}}{2})^{a_2},
$$
 (60)

where $a_1 + a_2 = s$. Comparing constant terms of $f_1(x)$ and tr $R(A, B_1)$, we obtain from (58), (60)

$$
e \operatorname{coefficient of tr } R(A, B) \text{ is equal to}
$$
\n
$$
ε^{4U+3V} + ε^{-4U-3V} = 2 \cos(\frac{4U+3V}{12}\pi),
$$
\n
$$
U = \sum_{i=1}^{s} u_i. \text{ Bearing in mind our assumptions, } 2 \cos(\frac{4U+3V}{12}\pi)
$$
\n
$$
e \text{ only the following values:}
$$
\n
$$
\pm(\frac{\sqrt{6}-\sqrt{2}}{2})^{\pm 1}, \pm \sqrt{2}.
$$
\n(59)\n
$$
e \text{ in it follows from (57) that } a_4 = 0.
$$
\n
$$
o(g) = A = \begin{pmatrix} e^4 & 0 \\ 1 & e^{-4} \end{pmatrix}, \qquad o(h) = B_1 = \begin{pmatrix} e^{-3} & x \\ 0 & e^{-3} \end{pmatrix},
$$
\n
$$
e(g) = A = \begin{pmatrix} e^4 & 0 \\ 1 & e^{-4} \end{pmatrix}, \qquad o(h) = B_1 = \begin{pmatrix} e^{-3} & x \\ 0 & e^{-3} \end{pmatrix},
$$
\n
$$
e_1 = a_1 \text{ and } a_2 = 0.
$$
\n
$$
a_1 + a_2 = s.
$$
\n
$$
a_2 = s.
$$
\n
$$
a_3 = 0.
$$
\n
$$
a_1 + a_2 = s.
$$
\n
$$
a_3 = 0.
$$
\n
$$
a_2 = s.
$$
\n
$$
a_3 = 0.
$$
\n
$$
a_3 = 0.
$$
\n
$$
a_4 = \sqrt{2} \text{ and } a_5 = \sqrt{2} \text{ and } a_6 = \sqrt{2} \text{ and } a_7 = \sqrt{2} \text{ and } a_8 = \sqrt{2} \text{ and } a_7 = \sqrt{2} \text{ and } a_8 = \sqrt
$$

Since $\frac{\sqrt{6}-\sqrt{2}}{2}$ 2 $\frac{\sqrt{6}+\sqrt{2}}{2}$ = 1 and s is even, it follows from (61) that $t = 1$, $2a_1 - s = 0$, that is, $a_1 = a_2 = s/2$. Hence,

$$
\sqrt{2\cos(\frac{4U+3V}{12}\pi)} = \sqrt{2}.
$$

Thus, we must have $U \equiv (mod 3)$. But in this case there exists a well defined epimorphism

$$
\lambda : \Gamma \to \langle d; d^3 = 1 \rangle, \quad \lambda(a) = d, \lambda(b) = 1.
$$

Using Reidemeister–Schreier rewriting process, we obtain that ker λ has a representation of the form

ker
$$
\lambda = \langle g_1, g_2, g_3; g_1^4 = g_2^4 = g_3^4 =
$$

\n $R_1^2(g_1, g_2, g_3) = R_2^2(g_1, g_2, g_3) = R_3^2(g_1, g_2, g_3) = 1 \rangle$,

where R_1, R_2, R_3 are rewrites of R. One can check that $R_j (g_1, g_2, g_3) =$ $g_{i_1}^{p_1}$ $\frac{p_1}{i_1} \dots g_{i_r}^{p_r}$ $\sum_{i=1}^{p_r}$, where $\sum_{i=1}^{r} p_i$ is even. By Theorem 1 from [3], ker λ (and consequently Γ) contains a non-abelian free subgroup. Theorem 2 is proved.

References

- [1] G. Baumslag, J. W. Morgan, P.B. Shalen, Generalized triangle groups, Math. Proc. Cambridge Philos. Soc., N.102, 1987, pp.25-31.
- [2] V. Beniash-Kryvets, On free subgroups of some generalized triangle groups, Dokl. Akad. Nauk Belarus, N.47:2, 2003, pp.29-32.
- [3] V. Beniash-Kryvets, On the Tits alternative for some finitely generated groups, Dokl. Akad. Nauk Belarus, N.47:3, 2003, pp.14-17.
- [4] M. Culler, P. Shalen, Varieties of group representations and splittings of 3 manifolds, Ann. of Math., N.117, 1983, pp.109-147.
- [5] B. Fine, F. Levin, G. Rosenberger G., Free subgroups and decompositions of onerelator products of cyclics. Part I: the Tits alternative, Arch. Math. N.50, 1988, pp.97-109.
- [6] B. Fine B., G. Rosenberger, Algebraic generalizations of discrete groups. A path to combinatorial group theory through one-relator products, Marcel Dekker, 1999.
- [7] J. Howie, One-relator products of groups, Proceedings of groups St. Andrews, Cambridge University Press, 1985, pp.216-220.
- [8] J. Howie, Free subgroups in groups of small deficiency, J. of Group Theory, N.1, 1998, pp.95-112.
- **References**

12 G. Baumshag, J. W. Morgan, P.B. Shalon, *Congralisted Grangle groups*, Mat Proc. Cambridge Philos Soc. N.102, 1987, pp.26-31.

12 IV. Bennish-Kryovets, On free sologroups of some generated of tangle group [9] F. Levin, G. Rosenberger, On free subgroups of generalized triangle groups, Part II, Proceedings of the Ohio State-Denison Conference on Group Theory, (ed. S. Sehgal et al), World Scientific, 1993, pp.206-222. Fine B., G. Rosenberger, Algebraic generalizations of discrombinatorial group theory through one-relator products, Ma

Howie, *One-relator products of groups*, Proceedings of gro

horidge University Press, 1985, pp.216-220
	- [10] A. Lubotzky, A. Magid, Varieties of representations of finitely generated groups, Memoirs AMS, N.58, 1985, pp.1-116.
	- [11] A. Majeed, A.W. Mason, Solvable-by-finite subgroups of GL(2, F), Glasgow Math. J., N.19, 1978, pp.45-48.
	- [12] D. Mumford, Geometric invariant theory, Springer-Verlag, 1965.
	- [13] G. Rosenberger, On free subgroups of generalized triangle groups, Algebra i Logika, N.28, 1989, pp.227-240.
	- [14] K.S. Sibirskij, Algebraic invariants for a set of matrices, Sib. Math. J., N.9:1, 1968, pp.115-124.
	- [15] J. Tits, Free subgroups in linear groups, J. Algebra, N.20, 1972, pp.250-270.
	- [16] C. Traina, *Trace polynomial for two generated subgroups of* $SL_2(\mathbb{C})$, Proc. Amer. Math. Soc., N.79, 1980, pp.369-372.
	- [17] E. Vinberg, Y. Kaplinsky, Pseudo-finite generalized triangle groups, Preprint 00- 003, Universität Bielefeld, 2000.

CONTACT INFORMATION

V. Beniash-Kryvets Department of Algebra, Byelorussian State University, 4, F. Skaryny Ave., 220050, Minsk, Belarus E -*Mail*: benyash@bsu.by

РЕПОЗИТОРИЙ БАЛ

Propertment of Algebra and Geometry,
Byelorussian State Pechagogical University,
18, Sovetskaya Str. 220509, Minsbel. Dy
E-Mail: barkovich@bspu.unibbel.by

ADM NOS O. Barkovich Department of Algebra and Geometry, Byelorussian State Pedagogical University, 18, Sovetskaya Str. 220809, Minsk, Belarus E-Mail: barkovich@bspu.unibel.by