СЕКЦИЯ 2. МАТЕМАТИКА И МЕТОДИКА ОБУЧЕНИЯ МАТЕМАТИКЕ В УЧРЕЖДЕНИЯХ ВЫСШЕГО ОБРАЗОВАНИЯ

ТРАНСФОРМАЦИЯ МАТЕМАТИЧЕСКОЙ ПОДГОТОВКИ ГУМАНИТАРИЕВ В КОНТЕКСТЕ СОВРЕМЕННОЙ ПЕДАГОГИКИ

М. С. Артюхина, д. пед. н., доцент,

Национальный исследовательский Нижегородский государственный университет им. Н. И. Лобачевского,

Арзамас, Россия

e-mail: marimari07@mail.ru

Аннотация. Современная педагогика подчеркивает значимость личностного и профессионального развития студентов, что требует обновления подходов к математической подготовке гуманитариев. Проблемы традиционной подготовки включают низкую мотивацию, дефицит базовых знаний и слабую связь математики с профессией. Оптимальным решением являются интерактивные методики, придающие математическому образованию смысл и практическую ценность.

Ключевые слова: интерактивное обучение, математическое образование, гуманитарные направления подготовки.

TRANSFORMATION OF MATHEMATICAL TRAINING OF HUMANITIES IN THE CONTEXT OF MODERN PEDAGOGY

M. S. Artyukhina, Doctor of Pedagogical Sciences, Associate Professor, Lobachevsky State University of Nizhny Novgorod,

Arzamas, Russia

e-mail: marimari07@mail.ru

Annotation. Modern pedagogy emphasizes the importance of personal and professional development of students, which requires updating approaches to the mathematical training of humanities. The problems of traditional training include low motivation, a lack of basic knowledge, and a weak connection between mathematics and the profession. Interactive methods that give mathematical education meaning and practical value are the best solution.

Keywords: interactive learning, mathematical education, humanitarian areas of training.

Современная парадигма высшего образования предполагает приоритетное внимание к обеспечению условий для личностного и профессионального становления обучающихся, что обуславливает необходимость пересмотра традиционных подходов к организации Необходимость математической образовательного процесса. подготовки гуманитарных направлений обусловлена её значительным вкладом в формирование личности и профессиональной компетентности, для реализации которой требуется применение специальных педагогических методик, ориентированных не только на усвоение математических знаний, но и на развитие интеллектуальных навыков, необходимых для успешной деятельности в современном обществе, где высокий уровень математической подготовки позволяет использовать математические методы и модели в профессиональной леятельности.

Анализ педагогической практики и научно-методической литературы выявляет ряд проблем, характерных для математической подготовки студентов гуманитарных направлений. В частности, отмечается снижение мотивации к освоению математических дисциплин, пробелы в базовых знаниях элементарной математики, недостаточно развитые навыки самостоятельной учебной деятельности, низкая самооценка собственных математических способностей, а также отсутствие понимания практической значимости математики для будущей профессии. В целях преодоления выявленных проблем представляется важным пересмотреть подходы к организации учебной деятельности, акцентируя внимание на повышении мотивации студентов посредством придания учебным заданиям большей значимости и практической направленности. Необходимо интегрировать образовательный процесс с формами деятельности, отражающими профессиональные цели и интересы обучающихся, способствуя тем самым формированию устойчивой мотивации к изучению математических дисциплин.

Возникающие в процессе математической подготовки студентов трудности следует рассматривать как значимый личностный вызов, преодоление которого способствует раскрытию внутренних ресурсов и активизации процессов личностного становления. Преодоление негативных переживаний, связанных с изучением математики, оказывает синергетический эффект, проявляющийся не только в повышении уровня математической подготовки, но и в формировании позитивной самооценки и стремлении к самоактуализации. Анализ исследований в области психологии и педагогики позволяет заключить, что интерактивная модель обучения является оптимальной для реализации потенциала самоактуализации личности студента, а также эффективным средством формирования коммуникативных компетенций в процессе изучения математики.

В педагогике интерактивное обучение, включающее образовательное взаимодействие и технологическую составляющую, не является новым. Вместе с тем, отсутствие унифицированного терминологического аппарата и систематизированной классификации интерактивных методов и форм деятельности, несмотря на признанный потенциал обучения в развитии личности, требует дальнейшей разработки. интерактивного Происходящие изменения в образовательной системе, связанные с внедрением цифровой образовательной среды как ключевого элемента подготовки кадров для цифрового общества, актуализируют вопрос трансформации интерактивного обучения математике. Постоянное развитие цифровой среды, сопровождающееся появлением новых технологий и программных продуктов, требует пересмотра и модернизации традиционных подходов к интерактивному обучению математическим дисциплинам. Современные тенденции развития науки и образования, включая постнеклассическую науку, полипарадигмальность, ориентацию на готовность к инновационной деятельности, интеграцию информационных технологий, создание цифровой образовательной среды, развитие цифрового образования и глобальную информатизацию, обусловили новый этап развития интерактивного обучения.

Для эффективного использования интерактивных технологий обучения математике в цифровой образовательной среде необходимо соблюдение ряда педагогических условий, направленных на повышение качества подготовки к будущей профессии и личностный рост обучающихся:

- 1) организационно-технологические условия (обеспечение доступа к ресурсам, техническая поддержка);
- 2) методические условия (разработка интерактивных заданий, использование эффективных методов обучения);

3) условия личностного развития (создание поддерживающей среды, стимулирование мотивации).

Концепция интерактивного обучения математике реализуется посредством технологического подхода, включающего научный, содержательный и процессуальный компоненты. Освоение математической деятельности в цифровой образовательной среде осуществляется поэтапно, начиная с приобретения опыта, его последующего применения и, наконец, преобразования, что обеспечивает переход обучающихся на новый уровень развития математической компетентности и способствует формированию их личностных качеств. Обогащение опыта деятельности в интерактивной образовательной среде обеспечивается усвоения знаний; формирования устойчивой посредством: активного к самообразованию (как личностному, так и профессиональному) за счет углубления математических знаний и развития методов познания; интеграции поисковой, проектной и творческо-исследовательской математической деятельности использованием информационных технологий.

Процесс интерактивного обучения математике на гуманитарных направлениях реализуется в виде технологически выстроенной последовательности этапов. Первым этапом является проективный, на котором формулируются диагностируемые и операциональные цели обучения математике, а также идентифицируются проблемные зоны и трудности, возникающие в процессе формирования математической компетентности у студентов гуманитарных специальностей. Диагностический этап посвящен оценке начального уровня математической полготовки студентов, выявлению их психологических характеристик, уровня мотивации и рефлексии. На операционном этапе осуществляется выбор наиболее эффективных форм, методов и приёмов учебно-познавательной деятельности, направленных на развитие математической компетентности и личностный рост студентов. Оценочнокоррекционный этап предусматривает непрерывную диагностику результатов обучения, обеспечивающую возможность контроля и самоконтроля организации учебной деятельности. Завершающий обобщающе-преобразующий этап связан с применением полученных профессиональной математических знаний В сфере, также стимулированием самостоятельного изучения математики и самосовершенствования.

Организация педагогической интеракции на лекционных и практических занятиях осуществляется посредством применения различных методов, таких как сократический и агональный диалог, а также технологий «flipped classroom», проблемного обучения и проектной деятельности. Важным элементом является цифровая образовательная среда, включающая цифровые образовательные ресурсы, оборудование, программное обеспечение и платформы, созданные для эффективной реализации обучения в цифровом формате.

В целях активизации самостоятельной и исследовательской деятельности обучающихся был разработан интернет-портал «Интерактивная образовательная среда». Портал предоставляет доступ к следующим основным ресурсам: цифровой фонд оценочных средств, включающий тесты по различным математическим дисциплинам, образовательные веб-квесты по разделам математики, а также разнообразные мультимедийные и учебнометодические материалы, в том числе видеолекции и междисциплинарные видеопроекты, разработанные студентами. Для поддержки e-learning обучения математике используются ресурсы и информационно-образовательная среда Университета Лобачевского. В качестве инструмента поддержки обучения разработана компьютерная учебно-деловая игра по основам теории множеств. Помимо освоения теоретического материала, игра направлена на формирование информационной культуры студентов, стимулирование потребности в знаниях и преодоление препятствий на пути к самоактуализации личности. С целью активизации

самостоятельной познавательной деятельности обучающихся в процессе интерактивного изучения математических дисциплин используются web-технологии, а именно – образовательные web-квесты по различным разделам математики.

Профессиональная направленность обучения математике реализуется организацию исследовательской деятельности студентов с использованием метода case-study. Этот метод предполагает решение конкретных, ориентированных на будущую профессию задач с применением информационных технологий. Разработана система таких задач для различных профилей подготовки, обеспечивающая как развитие математических компетенций, так и ознакомление с аспектами профессиональной педагогической деятельности.

Трансформация образовательных результатов в обучении математике приводит к изменениям в системе диагностики и оценки качества математической подготовки, затрагивая структуру, содержание, формы и средства оценивания обучающихся. Особое внимание уделяется практической значимости, что отражается в наполнении средств промежуточной аттестации новыми типами заданий: тематическими тестами, контрольными работами, защитой практико-ориентированных проектов. Подчеркивается необходимость применения полученных математических знаний в различных предметных областях и при подготовке выпускных квалификационных работ. С целью поддержания высокого уровня компетенций стимулируется самообразование, совершенствование математических знаний и участие в профильных мероприятиях, таких как семинары, конференции и олимпиады, даже после завершения изучения математических дисциплин.

Результаты педагогического эксперимента свидетельствуют о положительном влиянии интерактивной модели математического образования на гуманитарных направлениях. Актуализация интерактивной составляющей в обучении математике посредством реализации цифрового контента (веб-квесты, компьютерные учебно-деловые игры, краудсорсинг), применения диалогических методов обучения с контекстуализацией содержания математических дисциплин, стимулирования рефлексивной деятельности и четкой критериальной диагностике результатов обучения оказывает позитивное воздействие на мотивационно-ценностное отношение студентов к математическому образованию, их математическую успешность и самоактуализацию личности.

ПРОЕКТИРОВАНИЕ ТРАЕКТОРИИ ИЗУЧЕНИЯ МАТЕМАТИЧЕСКИХ ДИСЦИПЛИН БУДУЩИМИ УЧИТЕЛЯМИ МАТЕМАТИКИ И ИНФОРМАТИКИ

Е. В. Бахусова, к. пед. н., доцент,

Поволжская академия образования и искусств имени Святителя Алексия, митрополита Московского, Тольятти, Россия

Тольятти, Россия bahusova@mail.ru

Аннотация: Изложен алгоритм проектирования траектории изучения математических дисциплин, основанный на технологии проектирования учебного процесса (технологии В. М. Монахова).

Ключевые слова: технология проектирования учебного процесса, траектория изучения математических дисциплин, последовательность микроцелей дисциплины.