

Рисунок 4 – Раздаточный материал для создания радиальной диаграммы

Таким образом, целенаправленное и систематическое использование приёмов визуализации информации при реализации проектной деятельности при обучении математике способствует успешному достижению метапредметных образовательных результатов.

Список литературы

- 1. Новикова, Е. О. Методы визуализации информации как средство формирования метапредметных результатов при обучении математике в основной школе / Е. О. Новикова, И. Н. Власова // Вестник Вятского государственного университета. − 2022. № 1 (143). С. 77–86.
- 2. Новикова, Е. О. Поэтапное формирование универсальных учебных действий по работе с информацией у обучающихся основной школы / Е. О. Новикова // Человек в условиях социальных изменений: материалы международной научно-практической конференции. 14 апреля 2022, г. Уфа. Уфа: БГПУ им. М. Акмуллы, 2022. С. 242–244.
- 3. Новикова, Е. О. Прёмы визуализации информации как средство развития познавательных умений по работе с информацией на уроках математики / Е. О. Новикова // Актуальные проблемы обучения математике в школе и вузе: от науки к практике. К 80-летию со дня рождения В. А. Гусева: материалы VII Международной научно-практической конференции, г. Москва, 18–19 ноября 2022 г. / под ред. М. В. Егуповой. М.: МПГУ, 2022. С. 398–402.
- 4. Федеральная рабочая программа основного общего образования «Математика» углубленный уровень // Единое содержание общего образования. URL: Примерная рабочая программа основного общего образования предмета «Математика» углубленный уровень (edsoo.ru) (дата обращения: 28.06.2025).
- 5. Федеральный государственный образовательный стандарт основного общего образования // Единое содержание общего образования. URL: ФГОС ООО (11).pdf (дата обращения: 28.06.2025)

РАЗВИТИЕ ТВОРЧЕСКОЙ АКТИВНОСТИ УЧАЩИХСЯ ПРИ ИЗУЧЕНИИ МАТЕМАТИКИ В УСЛОВИЯХ ФОРМИРОВАНИЯ ЦИФРОВОГО ОБРАЗОВАТЕЛЬНОГО ПРОСТРАНСТВА

В. В. Орлов, д. пед. н, профессор, **М. К. Бушуев**, аспирант,

Российский государственный педагогический университет им. А. И. Герцена,

Санкт-Петербург, Россия

vlvo@mail.ru, misha.bush@mail.ru

Аннотация. В статье раскрыта связь между самостоятельной познавательной деятельностью ученика при обучении математике с его творческой активностью.

Ключевые слова: Обучение математике, системно-деятельностный подход к обучению, цифровое образовательное пространство, творческие способности, креативное мышление, самостоятельная познавательная деятельность.

DEVELOPMENT OF STUDENTS' CREATIVE ACTIVITY IN MATHEMATICS STUDIES IN THE CONDITIONS OF FORMING A DIGITAL EDUCATIONAL SPACE

V. V. Orlov, Doctor of Pedagogical Sciences, Professor,
M. K. Bushuev, Postgraduate Student,
A. I. Herzen State Pedagogical University of Russia,
Saint Petersburg, Russia
vlvo@mail.ru, misha.bush@mail.ru

Abstract. The article reveals the connection between the student's independent cognitive activity in mathematics education and their creative activity.

Keywords: Mathematics education, system-activity approach to education, digital educational space, creative abilities, creative thinking, independent cognitive activity.

Современный этап развития системы российского математического образования характеризуется среди прочего системно-деятельностным подходом к обучению и реализацией этого подхода в условиях формирования цифрового образовательного пространства школы и вуза.

Системно-деятельностный подход, в свою очередь, предполагает организацию активной самостоятельной познавательной деятельности обучающихся по освоению ими содержания математики как учебного предмета. Очевидно, что этой деятельности, во-первых, необходимо специально учить, во-вторых, создавать специальные инструменты для организации такой деятельности, поскольку ведущий принцип реализации данного подхода — принцип деятельности — предполагает осознание школьником (студентом) содержания и форм своей учебной деятельности.

Изучение математики можно рассматривать как непрерывный процесс решения задач. Образовательные, развивающие, воспитательные цели в процессе обучения математике реализуются через работу с различными задачами как в их традиционном понимании, так и специально составленными заданиями с математическим содержанием.

принципов системно-деятельностного подхода принцип психологической комфортности (педагогика сотрудничества, диалоговые формы обучения, организация ситуаций достижения успеха учащимися), принцип вариативности (способность учащихся к систематическому перебору вариантов решения проблемы), принцип творчества (приобретение учащимися опыта творческой деятельности). Для реализации последнего необходимо формирование у учеников творческих способностей. Развитие творческих способностей в процессе обучения математике декларирует и примерная программа обучения математике в школе. В свою очередь, творческие способности являются необходимым условием осуществления творческой деятельности. Психологи считают, что творческая деятельность — это «практическая или теоретическая деятельность человека, в которой возникают новые (по крайней мере, для субъекта деятельности) результаты (знания, решения, способы действия, материальные продукты)» [1, с. 669]. Таким образом, мы можем считать, что самостоятельная деятельность ученика по получению им в процессе освоения математического содержания новых знаний по предмету, различных методов решения задач относится к категории творческой деятельности и свидетельствует о наличии у обучающегося творческого мышления. Например, даже изготовление старшеклассниками моделей различных многогранников (платоновых и архимедовых тел, звездчатых форм и т. п.) в этой логике является творческой деятельностью.

Ряд отечественных и зарубежных психологов отождествляют творческое и креативное мышление, понимая под последним способность находить нестандартные решения и генерировать новые идеи, и выделяют среди основных типов креативного мышления дивергентное мышление – способность генерировать множество идей для решения одной задачи.

Сказанное выше позволяет нам утверждать, что обучение учащихся на уроках математики и в рамках предметной внеурочной работы самостоятельному поиску различных способов решения задач обеспечивает формирование у них опыта творческой деятельности, стимулирует их творческую активность, исследовательскую деятельность в области математики.

Существенная роль в этом процессе принадлежит работе с сюжетными задачами, геометрическими задачами на вычисление и доказательство, задачами на вычисление вероятности случайных событий. Обучение поиску решения предполагает освоение стратегий поиска (получение следствий из условия, развертывание требования, использование опорных задач или опорных конструкций), освоение различных методов решения задач и опыта выбора метода по определенным индикаторам и упражнения в деятельности по поиску различных способов решения конкретных задач. Еще раз повторим, что в действующих учебниках математики и на различных электронных ресурсах, связанных с решением задач, задания на организацию поиска решения математических задач практически отсутствуют. В связи с этим ведущая роль в обучении поиску решения задач в настоящее время принадлежит учителю. Эту деятельность он осуществляет на основе грамотно составленных наборов задач по различным темам школьного курса математики. Приведем отдельные примеры заданий.

В теме «Решение систем нелинейных уравнений» целесообразно использовать в качестве опорного задания систему $\begin{cases} xy=3,\\ x^2+y^2=10; \end{cases}$, при обучении различным методам

решения тригонометрических уравнений уравнение $\sin x - \cos x = 1$, при обучении поиску решения сюжетных задач — следующую задачу: «Два велосипедиста выехали одновременно из пунктов A и B навстречу друг другу и встретились через три часа. Сколько времени был в пути каждый, если первый прибыл в B на 2,5 часа раньше, чем второй в A». Эти задания имеют несколько способов решения.

При работе с геометрическими задачами важно обучение учащихся получению следствий из условия. Делать это можно с помощью заданий, подобных приведенному ниже.

Задание. В трапеции проведены биссектрисы внутренних углов, прилежащих к боковой стороне. Какие следствия из данного условия вы можете получить? Какая фигура получится, если провести еще две биссектрисы углов при другой боковой стороне? Что сохранится и что изменится в полученных следствиях, если вместо трапеции взять параллелограмм или произвольный выпуклый четырехугольник? Выполняя это задание, школьники проводят учебное микроисследование.

Определенную помощь в развитии творческой активности школьника и обучению самостоятельной познавательной деятельности оказывает процесс построения цифрового образовательного пространства. Цифровизация в образовании предполагает интеграцию цифровых технологий и электронных образовательных ресурсов в учебный процесс. В рамках данной статьи выделим один из отечественных цифровых инструментов — графический калькулятор Desmos. Он представляет собой набор бесплатных динамических программ, включающий в себя геометрию, алгебру, таблицы, графы, статистику и арифметику. Представленный графический калькулятор позволяет учащимся и учителям исследовать теоретический материал в динамической и визуально насыщенной среде. Его использование

в рамках изучения геометрии может значительно повысить творческую активность учащихся, стимулируя их интерес и вовлеченность в учебный процесс.

Одним из ключевых преимуществ Desmos является его способность визуализировать различные математические идеи как на плоскости, так и в трехмерном пространстве. Учащиеся могут строить графики функций, исследовать планиметрические и стереометрические фигуры, наблюдать, как изменения в уравнениях или заданных параметрх фигур (длина ребра, радиус шара и т. п.) влияют на их форму и положение, находить пересечение или объединение фигур. Это помогает им лучше понять взаимосвязи между различными элементами и развивает навыки анализа. Учащиеся могут выдвигать гипотезы о геометрических свойствах и сразу же проверять их, создавая соответствующие модели. Таким образом они могут самостоятельно прийти как к формулировкам признаков параллельности прямых, встречающихся в школьной программе, так и к теореме Наполеона, выходящей за рамки базового курса школьной геометрии. Отметим, что для данного эффекта учащимся необходимо уверенно пользоваться программой и знать её основной функционал.

Для организации творческой и проектной деятельности с помощью графического калькулятора Desmos можно предложить учащимся создавать динамические модели, демонстрирующие тот или иной теоретический материал. Например, теорему об отношении площадей подобных треугольников или объёмов подобных тетраэдров. С помощью параметрически заданных фигур, при перемещении ползунка в определённое положение, треугольник разобьётся на 4 равных, а тетраэдр на 8 равных фигур. Получается, с помощью графического калькулятора учащиеся могут самостоятельно прийти к формулировке теоремы, строя подобные треугольники с различными коэффициентами подобия и находя отношение их площадей. Так и в обратную сторону, зная формулировку теоремы, собственноручно сделать демонстрационный материал к ней в виде динамического чертежа. Таким образом, учащиеся лучше понимают абстрактные геометрические идеи и развивают пространственное мышление.

Для детей, которые интересуются математикой и графикой, изобразительным искусством, проводится конкурс ArtExpo, организованный компанией Desmos, который направлен на демонстрацию творческого использования их графического калькулятора. Участники создают изображения с помощью возможностей Desmos для построения графиков и визуализации математических функций. Для этого им необходимо знать, как различные кривые и геометрические фигуры задаются на координатной плоскости. Для создания узоров и паркетов нужно знать движения плоскости, рекурсии и фракталы, а для анимированной графики — уметь работать с параметрами. Этот конкурс позволяет учащимся, учителям и любителям математики проявить свои творческие способности, создавая удивительные и сложные графические работы. Для начинающих пользователей специально созданы обучающие видео и статьи о том, как с помощью графического калькулятора рисовать линии, закрасить участок плоскости, сделать движущуюся фигуру.

Создание таких проектов требует от учащихся не только знания геометрического материала, но и умения применять их на практике, что способствует развитию творческого мышления.

Графический калькулятор Desmos является мощным инструментом, который может значительно повысить творческую активность учащихся на уроках геометрии. Его способность к визуализации, интерактивности и поддержке совместной работы делает его ценным ресурсом для современного образования. Использование Desmos не только способствует более глубокому пониманию геометрических концепций, но и развивает у учащихся навыки критического и творческого мышления, которые являются важными

для их будущего успеха в быстро меняющемся мире. Более подробную информацию о графическом калькуляторе можно найти в источниках [3, 4].

Список литературы

- 1. Большой психологический словарь / Б. Г. Мещеряков, В. П. Зинченко. М. : Издательский дом ACT, 2008.-864 с.
- 2. Разумова, О. В. Формирование творческого мышления учащихся на уроках математики средствами информационно-коммуникационных технологий / О. В. Разумова, К. Б. Шакирова, Е. Р. Садыкова // Информатика и образование. -2011. № 9 (227). С. 79-82.
- 3. Официальный сайт Desmos Studio. URL: https://www.desmos.com/?lang=ru (дата обращения 35.03.2025).
- 4. Победители конкурса Desmos Art Expo. URL: https://www.desmos.com/art?lang=ru#geometry (дата обращения 35.03.2025).

ИСТОРИЯ МАТЕМАТИКИ В ПОПУЛЯРНОМ ИЗЛОЖЕНИИ КАК СРЕДСТВО ФОРМИРОВАНИЯ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА

Т. С. Полякова, д. пед. н., профессор, Южный федеральный университет, Ростов-на-Дону, Россия, e-mail: 46tsp@mail.ru

Аннотация. Обоснована необходимость популярного изложения истории математики для широкого круга читателей. Показана роль популярной истории математики в формировании познавательного интереса обучаемых, без которого творчество отсутствует. Рассмотрены примеры.

Ключевые слова: творчество, математические и гуманитарные способности, история математики, популяризация, познавательный интерес.

THE HISTORY OF MATHEMATICS IN POPULAR PRESENTATION AS A MEANS OF FORMING COGNITIVE INTEREST

T. S. Polyakova, Doctor of Pedagogical Sciences, Professor, Southern Federal University, Rostov-on-Don, Russia

e-mail: 46tsp@mail.ru

Annotation. The necessity of a popular presentation of the history of mathematics for a wide range of readers is substantiated. The role of the popular history of mathematics in the formation of students' interest, without which creativity is absent, is shown. Examples are considered.

Keywords: creativity, mathematical and humanitarian abilities, history of mathematics, popularization, cognitive interest.

Любое творчество начинается с познавательного интереса творческой личности к объекту творчества. С точки зрения Г. И. Щукиной, познавательный интерес – это избирательная направленность личности, обращенная к процессу овладения знаниями. Ею выделены несколько видов познавательного интереса. Ситуативный, который чаще всего является эпизодическим, но всё же способствует становлению познавательного интереса; устойчивый, активный, проявляющийся в эмоционально-познавательном отношении к объекту интереса; личностный, отражающий направленность личности [5]. Направленность