

ISSN 1818-8575

BEEELT

Ссрыяя Фізіка матэматыка інфарматыка Біялогія геаграфія УДК 530.1

В.М. Добрянский, доктор технических наук, профессор кафедры общей и теоретической физики БГПУ; О.А. Железнякова, аспирант кафедры общей и теоретической физики БГПУ; Ю.А. Федотова, кандидат физико-математических наук, заведующий лаборатории перспективных материалов НЦ ФЧВЭ БГУ; Ю.В. Касюк, аспирант кафедры перспективных материалов НЦ ФЧВЭ БГУ; С.А. Лебедев, кандидат физико-математических наук, научный сотрудник ГПУ ОИФТТП НАН Беларуси; Т.В. Тарасевич, младший научный сотрудник ГПУ ОИФТТП НАН Беларуси

MECCБАУЭРОВСКАЯ СПЕКТРОСКОПИЯ В СИСТЕМЕ YFeSbEO_z F_x (x = 0; 0,3)

За последние несколько лет активизировался поиск новых сверхпроводящих матеоксипниктидов риалов среди с общей формулой REMPnO (RE = Sm, Ce, La, Nd, Y, Pr; M = Fe, Co; Pn = P, As) [1]. Считается, что сверхпроводимость в FeAs-системах может инициироваться либо замещением кислорода фтором, или созданием кислородных вакансий, либо замещением RE³⁺ двухвалентным элементом. В литературе отсутствует информация об оксипниктидах, содержащих вместо атомов мышьяка атомы сурьмы.

Цель работы: поиск новых сверхпроводников в системе YFeSbO_zF_x (x = 0; 0,3); изучение влияния замещений атомов кислорода атомами фтора на магнитные и сверхпроводящие свойства.

Образцы железосодержащих керамик были приготовлены из Y_2O_3 , Fe_2O_3 , Sb_2O_3 , YF_3 , исходная шихта имела состав:

(0,5–x/2)×Y₂O₃ + x×YF₃ + 0,5×Sb₂O₃ + + 0,5×Fe₂O₃ (где x = 0,0; 0,1).

Предварительное прессование составов осуществлялось при давлении 100 МПа. Синтез образцов без использования высокого давления проводился в одну стадию на воздухе при температуре 1230 °С, в течение 10 часов (скорость набора температуры 2 °С/мин). Синтез под давлением (5 ГПа) проводился в течение 1 минуты при температуре 800 °С.

На рисунке 1 приведены результаты рентгенофазового анализа, согласно которым керамика, полученная по обычной керамической технологии, является однофазной. На рентгено-дифрактограммах керамик, полученных с использованием высокого давления, появляются дополнительные пики, которые соответствуют фазе Fe_3O_4 . Для вышеуказанных керамик была исследована зависимость магнитного момента от температуры. На рисунке 26 приведена зависимость магнитного момента от температуры для керамик с x = 0,0. Для всех керамик, полученных с использованием высокого давления, в температурной зависимости магнитного момента отмечены аномалии в районе температур 100–120 К (рисунок 2). В указанном диапазоне температур происходит уменьшение величины магнитного момента, что, вероятно, можно объяснить переходом из ферро- в ферримагнитное состояние.

Ядерные гамма-резонансные спектры (ЯГР – спектры) образцов состава YFeSbO представлены на рисунке 3. Данные рисунка За и таблицы 1 свидетельствуют, что спектр образца, полученного по обычной керамической технологии, может быть описан с помощью одного немагнитного подспектра D₁. Данный дублет был интерпретирован как немагнитная локальная конфигурация атомов железа в структуре сложного феррита. В случае образца YFeSbO параметры данного дублета отличаются от параметров соответствующего подспектра в спектре образца SmFeSbO [2-3] только некоторым увеличением квадрупольного расщепления (0,75 мм/с для SmFeSbO → 0,87 мм/с для YFeSbO), что говорит об увеличении искажений электрического поля на ядрах железа при переходе от феррита самария к ферриту иттрия. Следует отметить, что в спектре образца 4 отсутствует подспектр, характеризующий магнитную компоненту феррита, либо он присутствует в спектре лишь на уровне фона (менее 3 %).

Рисунок 1 – Рентгенодифрактограммы керамик систем YFeSbOx/F0,3.

Рисунок 3 – ЯГР-спектры образцов YFeSbO (а), YFeSbOF – синтез под высоким давлением (б).

Рисунок 2 – Температурная зависимость магнитного момента и сопротивления для керамик YFeSbOz, x = 0,0 (полученных с использованием ВД).

Таблица 1	– Параметры	спектров
образцов	YFeSbO	

Образоц	Подспектр	δ,	ΔE ,	H _{эфф} ,	Вклад,
Образец		мм/с	мм/с	Тл	%
YFeSbO	дублет D1	0,37	0, 8 7	-	100
YFeSbOF (ВД)	дублет D1	0,27	0,83	—	46
	секстет S1	0,69	0,05	45,7	35
	секстет S ₂	0,27	0,02	48,8	19

Спектр образца YFeSbO, полученного под высоким давлением с добавлением фтора, характеризуется наличием двух магнитных подспектров, секстетов S₁ и S₂, по своим параметрам соответствующих магнетиту (Fe₃O₄). Стоит также обратить внимание на тот факт, что соотношение спектральных линий секстетов S1 и S2 не совсем соответствует стехиометрическому (~ 2) и составляет менее 1,85, что, однако, существенно выше, чем в случае SmFeSbO (ВД) [2-3]. Не исключено, что секстет S₂ представляет собой суперпозицию одного из подспектров магнетита и одного из подспектров феррита, который по-прежнему вносит несущественный вклад В общую спектральную картину (менее 3 %).

На основе данных ЯГР спектров установлено, что применение высокого давления

(5 ГПа, 800 °C) при получении керамики приводит к увеличению искажения электрического поля на ядрах железа. В указанной системе не обнаружено явного присутствия сверхпроводящих фаз.

Литература

- Senatore, C. // Physical Review B. / C. Senatore, R. Flükiger, M. Cantoni. – 2008. – Vol. 78, № 054514.
- Добрянский, В.М. Изучение сверхпроводящих и магнитных свойств системы Sm_{1-x}Ca_xFeSbO_z / В.М. Добрянский, О.А. Железнякова, С.А. Лебедев и др. // Вестник БГУ. Сер. 1. Физика. Математика. Информатика. – 2010. – № 1. – С. 61–63.
- Федотова, Ю.А. Магнитные свойства системы Sm_{1-x}Ca_xFeSbO_z (0 ≤ x ≤ 0,2) / Ю.А. Федотова, Ю.В. Ка-

сюк, С.А. Лебедев и др. // Сб. докл. Междунар. науч. конф. «Актуальные проблемы физики твердого тела». – Минск, 2009. – Т. 1. – С. 264–266.

SUMMARY

Samples of ceramics are synthesised from Y_2O_3 , Fe_2O_3 , Sb_2O_3 , YF_3 . Preliminary pressing of structures was carried out at pressure 100 MPa. Synthesis of samples has been spent both without high pressure use, and with use of technology of a high pressure. The structures received on usual ceramic technology, are single-phase, and received with high pressure use have additional peaks. Dependence of the magnetic moment on temperature has been investigated for the specified ceramics.

Поступила в редакцию 16.05.2010 г.