

ISSN 1818-8575

BECHT

Серыя у Фізіка матэматыка інфарматыка Біялогія геаграфія

Литература

- Редьков, В.М. Поля частиц в римановом пространстве и группа Лоренца / В.М. Редьков. – Минск: Белорусская наука, 2009. – 495 с.
- Кисель, В.В. О релятивистских волновых уравнениях для массивных частиц со спином 2 / В.В. Кисель // Весці АН БССР. Сер. фіз.-мат. навук. – 1986. – № 5. – С. 94–99.
- Fierz, M. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field / M. Fierz, W. Pauli // Proc. Roy. Soc. London. A. – 1939. – Vol. 173. – Р. 211–232; О релятивистских волновых уравнениях для частиц с произвольным спином в электромагнитном поле // В сб. Паули В. // Труды по квантовой теории. Статьи 1928–1958. – М.: Наука, 1977. – С. 318–353.
- Федоров, Ф.И. Группа Лоренца / Ф.И. Федоров. М.: Наука, 1979. – 384 с.
- 5. *Богуш, А.А.* Обобщенные спинорные символы Кронекера и матрицы уравнений для ча-

стиц с полуцелым спином / А.А. Богуш, В.В. Кисель // ДАН БССР. – 1983. – № 10. – Т. 27. – С. 897–900.

- Богуш, А.А. О матрицах уравнений для частиц со спином 2 / А.А. Богуш, Б.В. Крылов, Ф.И. Федоров // Весці АН БССР. Сер. фіз.-мат. навук. – 1968. – № 1. – С. 74–81.
- Богуш, А.А. Введение в полевую теорию элементарных частиц / А.А. Богуш. – Минск: Наука и техника, 1981. – 390 с.

SUMMARY

Tensor analogue to spinor first order equations system in 50-component description of a massive spin 2 particle is found. The 50-component model is compared with a 30-component formalism. It is shown that in absence of external fields two approaches are equivalent.

О.А. Железнякова, аспирант кафедры общей и теоретической физики БГПУ

ФАЗООБРАЗОВАНИЕ, СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА КЕРАМИК TL-2223

Ведение. Повышение критической температуры сверхпроводящего перехода в металлах и сплавах за последние годы – результат усилий исследователей многих научных лабораторий. Толчком в активизации в этом направлении стало открытие высокотемпературной сверхпроводимости в системе таллий – барий – кальций – медь – кислород (А.М. Херман, США, 1988 г.). Таллий-содержащие сверхпроводники имеют наивысшую температуру перехода (после ртуть-содержащих сверхпроводников).

Цель работы: отработать технологию получения таллиевой керамики TI-2223; исследовать полученные образцы на однофазность; изучить электрофизические и структурные свойства керамики.

С кристаллохимической точки зрения соединения таллий-содержащих сверхпроводников относятся к нескольким различным структурным типам, генетически связанным между собой, так что их состав можно представить общей формулой (TiO)_m(Ba₂Ca_{n-1}Cu_nO_{2n+2}), где m может принимать значения 1 и 2, а n – от 1 до 6. В зависимости от величины m все таллий-содержащие сверхпроводники делят на две группы: с одиночными слоями TIO (m = 1) и с двойными слоями TI₂O₂ (m = 2). Соединения последней группы изоструктурны аналогичным висмут-содержащим соединениям (Bi₂O₂)(Sr₂Ca_{n-1}Cu_nO_{2n+2}) с n = 1–4, но соединения первой группы встречаются только у таллий-содержащих сверхпроводников. Кристаллическая структура соединений TI-2223 схематически показана на рисунке 1.

Кислород вокруг атомов таллия в TI-2223 располагается так, что «внутриплоскостная» связь TI-O3 имеет длину 2,46 Å, что больше, чем «внеплоскостные» расстояния TI-O3 и TI-O2: 2,03 Å (1,92 Å) и 1,98 Å (2,20 Å) соответственно [1].

В литературе есть сведения о двух методах твердофазных реакций, которые используются при получении соединения в системе TI-Ba-Ca-Cu-O.

Первый метод представляет собой прямое смешивание Tl₂O₃, BaO (BaO₂), CaO, CuO оксидов с последующим прессованием и синтезом при температурах от 830 до 910 °C [2–3]. Второй метод синтеза состоит из двух шагов [4]. Вначале производят обжиг однородной смеси из BaCO₃, CaCO₃, CuO при 900 °C в течение 10–16 часов; затем к обожженным порошкам добавляют Tl₂O₃, на окончательном этапе проводят спекание при температурах от 830 до 910 °C [5].

Детальные исследования состава и структуры TI-содержащих ВТСП показали, что остаточный углерод в синтезированных образцах понижает значение T_c. Поэтому на сегодняшний день синтез из карбонатов считается менее приемлемым, чем синтез из оксидов.

Эксперимент. Образцы таллий-содержащих керамик готовились из Tl₂O₃, CaO, CuO, ВаО2, взятых в количествах, обеспечивающих получение необходимых сверхпроводящих фаз с дополнительным введением мас. %) большого (до 45 избыточного количества оксида таллия Tl₂O₃. Исходная $TI_{2,8}Ba_2Ca_2Cu_3O_{10+x}$. шихта имела состав: Предварительное прессование составов осуществлялось при давлении 100 МПа. Обжиг на первой стадии проводился при 800 °С в течение 5 часов. Потом полученные образцы подвергались помолу, далее полученный порошок прессовался в таблетки Ø8 мм и высотой 12 мм. Затем таблетки помещались в контейнер для последующей обработки в аппарате высокого давления. Выдержка под давлением в 5 ГПа составляла 5 минут при комнатной температуре. После обработки давлением полученные образцы помещались

в печь. Спекание при 845 °C длилось в течение 12 часов.

Съемка профилей рентгеновских дифракционных рефлексов для уточнения кристаллических структур проводилась на дифракто-ДРОН-3М в автоматизированном метре режиме с шагом сканирования 0,02 ° в диапазоне углов 20-70°. Время экспозиции в каждой точке составляло 10 с. Управление автоматизированным комплексом производилось с помощью ПЭВМ. Процедура уточнения, которая применялась к 36 параметрам, производилась с помощью программы «QUANTO». Уточнение структурных параметров проводилось до тех пор, пока заключительные факторы расходимости R_p между экспериментальными и вычисленными по уточненным моделям структурными амплитудами не находились в пределах 5,5-6 %.

Полученные после первой стадии синтеза (до обработки ВД) образцы имели в своем составе СuO, BaCO₃ и BaCuO₂, а основной сверхпроводящей фазой у них была фаза TI-2212. По рентгенофазовому анализу сверхпроводящая фаза TI-2223 получается при оптимальном режиме синтеза от 6 до 12 часов. Результаты фазового анализа после двух стадий синтеза представлены в таблице 1.

Результаты и их обсуждение. Синтез образцов был проведен при 845 °С в течение 12 часов. Полученные при этой температуре образцы с точки зрения рентгенофазового анализа можно считать однофазными, они в качестве основной фазы содержали фазу 2223 с небольшим присутствием фазы карбоната бария (рисунок 2). Оценка среднего размера зерен, исследование микроструктуры излома полученных экспериментальных образцов проводились с помощью электронного микроскопа немецкой фирмы «LEO» (Рентгеновский микроанализатор LEO-1420 RONTEC).

	В течение о часо	7 B							
N≌	Условия синтеза		Фазовый состав образцов						
	Температура синтеза, °С	Время синтеза, час	CuO	BaCO ₃	BaCuO ₂	TI-2223	TI-2212	TI-1223	
1	Исходная таблетка после ВД (Ø 8 мм)		+	+	+	-	Основная фаза	-	
2	845	1,5	+	+	+	+	Основная фаза	-	
3	845	2,5	+	+	+	+	Основная фаза	-	
4	845	3	+	+	+	+	+	-	
5	845	4	+	+	+	+	+	-	
6	845	5	+	+	+	+	+	_	

Таблица 1 – Фазовый состав образцов после предварительного обжига при 800 °С в течение 5 часов

N₽	Условия синтеза		Фазовый состав образцов						
	Температура синтеза, °С	Время синтеза, час	CuO	BaCO ₃	BaCuO ₂	TI-2223	TI-2212	TI-1223	
7	845	6	-	+	-	Основная фаза		- 1	
8	845	7	_	+		Основная фаза	_	-	
9	845	8		+	-	Основная фаза	-	_	
10	845	9		+	-	Основная фаза		-	
11	845	10		+	-	Основная фаза	-	-	
12	845	11		+	-	Основная фаза	-	-	
13	845	12		+	-	Основная фаза	_	-	
14	845	13		+	+	+		+	

образцов Микроструктура полученных Исслепредставлена на рисунке 3 (а, б). дования микроструктуры ВТСП-образцов показали, что зерна образцов имеют четкие неразмытые границы и стекловидная фаза не обнаруживается. Согласно исследованию микроструктуры, полученные образцы представляют собой конгломерат хаотически ориентированных микрокристаллитов фазы 2223 пластинчатой формы.

Рисунок 3 – Микроструктура керамик состава Tl₂Ba₂Ca₂Cu₃O_{10+x}.

В таблице 2 представлены результаты уточнения кристаллической структуры Tl₂Ba₂Ca₂Cu₃O_{10+x}.

На рисунках 4–5 приведены температурные зависимости для удельного сопротивления образцов. Удельное сопротивление первоначально линейно возрастает с уменьшением температуры. При отсутствии магнитного поля отклонение от этого линейного уменьшения начинается при температуре около

Таблица 2 – Результаты уточнения кристаллической структуры Tl₂Ba₂Ca₂Cu₃O_{10+x.}

Тип рег	шетки	Тетрагональный			
Простр	анственная гр	14/mmm (139)			
Параме	етры решетки				
		3,847(4)			
		<i>c</i> , A	35,60(4)		
Атом	Положение	Параметр			
TI/Ca	(0,5;0,5;z)	Z	0,2197(1)		
		B, Å ²	0,8		
		n	0,77/0,23		
Ba	(0;0;z)	Z	0,1445(1)		
		B, Å ²	0,5		
		n	1		
Ca/TI	(0;0;0.045)	B, A ²	0,4		
		n	0,91/0,09		
Cu(1)	(0,5;0,5;0)	B, A ²	0,2		
. /	(,,,,,,	n	1		
Cu(2)	(0.5:0.5:z)	Z	0.0881(1)		
. ,	(, , , , , , ,	B. A ²	0.4		
		n	1		
O(1)	(0,5;0;0)	B, Å ²	0,7		
		n	1		
O(2)	(0,5;0;z) (0,5;0,5;z)	Z	0,0881(1)		
		B, Å ²	0,9		
		n	1		
O(3)		Z	0,165(1)		
		B, Ų	1,0		
		n			
O(4)	(0,592;0,5;z)	Z	0,275(1)		
		B, Ų	0,2		
		n	0,25		
Основные межатомные расстояния, А					
	TI – (D(3)	1,947		
	TI – (2,021			
	Ca-	2,513			
	Ca-	2,453			
	Ba –	2,782			
	Ba-	2,817			
	Ba –	2,867			
	Cu(1) -	1,924			
	Cu(2) -	1,924			
Критер	оий близости т	еоретической рентге к экспериментальной	ено-дифрактограммы й		
	R,	%	5,36		
	Rwp	7,11			

Рисунок 4 – Зависимость удельного сопротивления от температуры и величины внешнего магнитного поля при I = 1 mA.

Рисунок 5 – Зависимость удельного сопротивления от температуры и величины внешнего магнитного поля при I = 10 mA.

Рисунок 6 – Зависимость магнитного момента от температуры в разных полях.

120 К и сопротивление (ρ_0) достигается при 107 К (I = 1 mA) и при 103 К (при I = 10 mA). При нулевом поле наблюдается достаточно острый переход. Данный переход расширяется с появлением магнитного поля. Область высоких температур только слегка находится под влиянием магнитного поля. На участке низких температур наблюдается снижение температуры перехода при увеличении магнитного поля. Отсутствие затянутости перехода в сверхпроводящее состояние свидетельствует об однофазности полученных образцов.

Для полученных образцов было проведено исследование магнитного момента от температуры (рисунок 6). Данные рисунка 6 свидетельствуют, что резкое уменьшение величины магнитного момента при отсутствии поля происходит при 110 К. При наличии поля в 0,5 Тл и 3 Тл заметно смещение температуры перехода в сторону низких температур: при 45 К и 25 К соответственно. Наличие у каждого из образцов по одному спаду магнитного момента в зависимости от температуры свидетельствует о том, что образец содержит только одну сверхпроводящую фазу.

Выводы. Полученные при 845 °С образцы с точки зрения рентгенофазового анализа можно считать однофазными. Основной фазой у них является фаза 2223, также отмечается небольшое присутствие фазы карбоната бария. Зерна образцов имеют четкие, неразмытые границы и стекловидная фаза не обнаруживается. Отсутствие затянутости перехода в сверхпроводящее состояние при изучении $\rho(T)$ и наличие у образцов по одному спаду в зависимости от M(T) свидетельствует об однофазности полученных образцов.

ЛИТЕРАТУРА

- Yu, J. Electronic structure and properties of the high-T_c superconductors: Tl₂Ba₂CaCu₂O₈ and Tl₂Ba₂Ca₂Cu₃O₁₀ / J. Yu, S. Massidda, A.J. Freeman // Physica C, 152. – 1988. – P. 273–282.
- Fujiwara, Y. Thermally stimulated luminescence from high-Tc superconducting TI-Ba-Ca-Cu-O system / Y. Fujiwara, M. Tonouchi, T. Kobayashi // Jpn. J. Appl. Phys. Pt. 2. – № 9, vol. 27. – 1988. – P. L1706–L1708.
- Hiraga, K. Crystal structures of TI-Ba-Ca-Cu-O superconducting phases studied by high-resolution electron microscopy / K. Hiraga, D. Shindo, M. Hirabayashi, M. Kikuchi, N. Kobayashi, Y. Syono // Jpn. J. Appl. Phys. – № 10, vol. 27. – 1988, P. L1848–L1851.
- Okada, M. Ag-sheathed TI-Ba-Ca-Cu-O superconductor tape with T_c almost 120K / M. Okada, R. Nishwaki, T. Kamo, T. Matsumoto, K. Aihara, S. Matsuda, M. Seido // Jpn. J. Appl. Phys. – № 12, vol. 27. – 1988. – P. L2345–L2347.
- Takahashi, K. Preparation and properties of TI-Ca-Ba-Cu-O / K. Takahashi, M. Nakao, D.R. Dietderich, H. Kumakura, K. Togano // Jpn. J. Appl. Phys. Pt. 2. – № 8, vol. 27. – 1988. – P. L1457–L1459.

SUMMARY

The method of manufacture oxyfluorides of thallium-based HTSC $TI_2Ba_2Ca_2Cu_3O_{10+x}$ using high pressure cold pressing was developed. Studying crystal structure is led. The samples received at 845°C are considered to be a single-phase. The basic phase of them is phase 2223. The dependence $\rho(T)$ and

M(T) is studied.