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Abstract

A special case of Askey-Wilson algebra AW (3) with three generators is shown to serve
as a hidden symmetry algebra underlying the Hahn problem for the quantum algebra slq(2).
On the base of this hidden symmetry the corresponding Clebsch-Gordan coefficients in terms
of the q-Hahn polynomials is found.
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1 Introduction

As is well known, any symmetry of the problem under consideration corresponds to its own
symmetry operator. If there are several of them, then they can form an dynamic or hidden
symmetry algebra. In particular, the Askey-Wilson algebra is considered as the most general
algebra for problems with the polynomial solutions [1]. Her special case of Hahn algebra has
lately become quite popular. Even the so-called meta-Hahn algebra has recently been introduced
for a unified algebraic underpinning of the Hahn polynomials and rational functions [2]. On the
other hand, there is the problem of finding the algebra of dynamic or hidden symmetry from the
general principles of its construction. One of the approaches to solving this problem was proposed
in [3] for general systems possessing SU(1, 1) ⊕ SU(1, 1) dynamical symmetry. The quadratic
Hahn algebra QH(3) was shown to serve as a hidden symmetry in both quantum and classical
pictures. Attempt of its q-generalization can be found in [4], but they were all limited only to
the SUq(1, 1) case. Although it should be noted that in [5] a new addition rule is proposed for
nonlinear algebras including slq(2)⊕ slq(2) and two types of q-oscillator algebra.

The purpose of this paper is to present an analogous to [3] algebraic treatment of hidden
symmetry for all types of algebras obeying that a new addition rule which was proposed in [5].

The paper is organized as follows. In Sec.II, we recall the addition rule for different types of
slq(2) algebras in accordance with Ref. [5]. In Sec.III, the special case of Askey-Wilson algebra
AW (3) is shown to be the hidden symmetry algebra for this case. On the base of this hidden
symmetry the corresponding Clebsch-Gordan coefficients in terms of the q-Hahn polynomials will
be presented in Section IV. Concluding remarks and perspectives will form the last section.

2 Different types of slq(2) and their addition rule

This section provides the necessary background material on the addition rule for nonlinear al-
gebras. In particular, we represent the next own notation for the slq(2) algebra (compare with
[5, 6, 7]), which is generated by three operators A0, A+, A− obeying the relations:

[A0, A±] = ±A±,

[A−, A+] = g(A0 + 1/2)− g(A0 − 1/2) =

= (q − q−1)(a1q
2A0 − a2q

−2A0), (1)

where [a, b] = ab− ba; g(x) = a1q
2x + a2q

−2x
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In what follows we shall denote the algebra slq(2) with commutation relations (1) by the symbol
(a2, a1).

The special cases of (a2, a1) algebra are:
(i) suq(2) if a2 = a1 > 0 and q > 1 or a2 = a1 < 0 and 0 < q < 1 ;
(ii) suq(1, 1) if a2 = a1 < 0 and q > 1 or a2 = a1 > 0 and 0 < q < 1 ;
(iii) cuq(2) if a2 = −a1 < 0 and q > 1 or a2 = −a1 > 0 and 0 < q < 1 ;
(iv) eu+q if a2 < 0, a1 = 0 and q > 1 or a2 > 0, a1 = 0 and 0 < q < 1 ;
(v) eu−q if a2 = 0, a1 > 0 and q > 1 or a2 = 0, a1 < 0 and 0 < q < 1.
The Casimir operator of the (a2, a1) algebra which commutes with all generators has the

expression

Q̂ = A+A− − g(A0 − 1/2) = A+A− − a1q
2A0−1 − a2q

1−2A0 =

= A−A+ − g(A0 + 1/2) = A−A+ − a1q
2A0+1 − a2q

−2A0−1. (2)

In view of the defining relations (1), it is clear that slq(2) has a ladder representation. Let
µ > 0 be a positive real number and consider the infinite-dimensional vector space V (µ) spanned
by the orthonormal basis vectors e(µ)n , n ∈ {0, N}, and endowed with the actions

A0e
(µ)
n = (n+ µ)e(µ)n , A+e

(µ)
n = rn+1e

(µ)
n+1, A−e

(µ)
n = rne

(µ)
n−1, (3)

A0e
(α)
n = (n+ α)e(α)n , A+e

(α)
n = r

(α)
n+1e

(α)
n+1, A−e

(α)
n = r(α)n e

(α)
n−1, (4)

with 〈ei, ej〉 = δij and where rn is given by

r2n = (q2n − 1)(a1q
2µ−1 − a2q

1−2n−2µ)) = (qn − q−n)(a1q
2µ−1+n − a2q

1−n−2µ) (5)

As expected from Schur’s lemma, the Casimir operator Q acts on canonical basis e(µ)n as a multiple
of the identity:

Q̂ e(µ)n = Q(µ)e(µ)n ≡ [−a1q
2µ−1 − a2q

1−2µ]e(µ)n . (6)

Fixing the value of the Casimir operator Q(µ) we get a unitary representation of the (a2, a1)
algebra. In this paper we restricted ourselves to the representations of the positive discrete series
D+

µ where rn > 0 and the state e
(µ)
0 is the vacuum of the representation D+

µ , i.e. r0 = 0.
The (a2, a1) algebra possesses an addition property that can be presented in the following way

[5]. Let {A0, A±, QA} and {B0, B±, QB} be two mutually commuting sets of slq(2) generators and
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denote the corresponding algebras by A and B. A third algebra, denoted C = A⊕ B, is obtained
by defining

C0 = A0 +B0,

C± = A±q
−B0 +B±q

A0. (7)

The addition rule (7) is the same as for ordinary slq(2) algebra [7], however the algebras (a2, a1)
and (b2, b1) in (7) may have different types [5, 6]. It is easily seen that in order for the operators
C0, C± to form new (c2, c1) algebra, the following relations must be fulfilled:

c2 = a2, d ≡ a1 = b2, c1 = b1; (8)

In symbolic form the addition rule (7) can be written as

(a2, d)⊕ (d, b1) = (a2, b1) (9)

The Casimir operator of the resulting algebra

Q̂C=A⊕B = C+C− − g(C0 − 1/2), (10)

may be cast in the form

Q̂C=A⊕B =
{

qA+B− + q−1B+A− + (q + q−1)dqA0−B0 + Q̂Bq
2A0 + Q̂Aq

−2B0

}

qA0−B0 , (11)

where Q̂i, i ∈ {A,B}, are the Casimir operators of the algebras A and B.

3 AW (3) algebra and the Hahn problem

According to the abstract schemes which was proposed in [3] for general systems possessing
SU(1, 1) ⊕ SU(1, 1) dynamical symmetry for the Hamiltonian C0 = A0 + B0 we have two in-
dependent integrals K1, K2 commuting with C0: the difference between the original operators
K1 = ∆ ≡ A0 − B0 and Casimir operators for the resulting algebra K2 = Q̂C=A⊕B. The Hahn
problem consists in finding the overlaps coefficients between the eigenbases of those two operators
K1, K2 and corresponds to the Clebsch-Gordan problem for SU(1, 1). This problem is non-trivial
because the operators K1 and K2 do not commute with one another.

Here we aim to construct a q-deformation of the above abstract scheme, preserving the general
algebraic foundations for this approach, i.e. to solve the Hahn problem for the quantum algebra
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slq(2). In other words, for our case we introduce one of them symmetry operator K2 as Casimir

operators for the resulting algebra (c2, c1) = (a2, d)⊕ (d, b1) = (a2, b1), i.e K2 = Q̂C=A⊕B:

K2 = C+C− − g(C0 − 1/2) = (A+q
−B0 +B+q

A0)(A−q
−B0 +B−q

A0)− c1q
2C0−1 − c2q

1−2C0 =,

= (±)q∆ + P2(q
∆) = (qA+B− + q−1B+A−)q

∆ + p2q
2∆ + p1q

∆ + p0, (12)

where p2 = (q + q−1)d; p1 = (QBq
C0 +QAq

−C0); p0 = 0.
It is clear that the second symmetry operator K1 is, in the general case, some function of ∆,

i.e K1 = f(∆). The formula (12) suggests an explicit form of this function f in the following form

K1 = qk∆, (13)

where while k is arbitrary real parameteris.
Consider the following sum K2

1K2 +K2K
2
1 in the two-operator approach to the Askey-Wilson

algebra [8, 9], trying to transform the each term of sum into the term K1K2K1:

K2
1K2 +K2K

2
1 = (q2k + q−2k)K1(qA+B− + q−1B+A−)q

∆K1 + 2P2(q
∆)K2

1 ,

= (q2k + q−2k)K1(K2 − P2)K1 + 2P2K
2
1 ,

= (q2k + q−2k)K1K2K1 − (qk − q−k)2P2K
2
1 . (14)

To remain in quadratic combinations of the original operators K1, K2 for the last term P2K
2
1 ,

it is necessary to take the value of k equal to -1:

K2
1K2 +K2K

2
1 − (q2 + q−2)K1K2K1 + (q − q−1)2(p2 + p1K1) = 0, (15)

Consider in a similar way the sum K2
2K1 +K1K

2
2 , trying to transform the each term of sum

into the term K2K1K2:

K2
2K1 +K1K

2
2 = 2K2K1K2 + (q − q−1)[K2;A+B− − B+A−] =

= (q2 + q−2)K2K1K2 − (q − q−1)2(p1K2 + t1K1 + t0), (16)

where t1 = (q + q−1)2a2b1; t0 = (q + q−1)(QBa2q
−C0 +QAb1q

C0).
Here, a great help in getting the final formula is to use the following expression for term

K2K1K2:

K2K1K2 = [P2 + (±)q∆]q−∆[P2 + (±)q∆] =

= P 2
2 q

−∆ + P2q
−∆(±)q−∆ + (±)P2 + (±)(±)q∆ =

= p1K2 + p22q
3∆ + p1p2q

2∆ +

+ (q2A2
+B

2
− + A+A−B−B+ + A−A+B+B− + q−2A2

−B
2
+)q

∆. (17)
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Thus, in the two-operator approach to the Askey-Wilson algebra [8, 9], we obtain the following
relations:

K2
1K2 +K2K

2
1 − (q2 + q−2)K1K2K1 + (q − q−1)2(p2 + p1K1) = 0,

K2
2K1 +K1K

2
2 − (q2 + q−2)K2K1K2 + (q − q−1)2(p1K2 + t1K1 + t0) = 0, (18)

Introducing the procedure of ”q-mutation” for arbitrary operators L,M

[L,M ]q ≡ qLM − q−1ML (19)

we get a special case of Askey-Wilson algebra AW (3) with three generators for the equation
(18), i. e. operators K1, K2 together with their q-mutator K3 obey the following algebra

[K1, K2]q = K3,

[K2, K3]q = BK2 + C1K1 +D1,

[K3, K1]q = BK1 + C2K2 +D2, (20)

where B,C1,2, D1,2 are the structure constants of the algebra (20):

B = (q − q−1)2p1 = (q − q−1)2(QBq
C0 +QAq

−C0),

C1 = (q − q−1)2t1 = (q2 − q−2)2a2b1, C2 = 0;

D1 = (q − q−1)2t0 = (q − q−1)2(q + q−1)(QBa2q
−C0 +QAb1q

C0),

D2 = (q − q−1)2p2 = (q − q−1)2(q + q−1)d. (21)

The Askey-Wilson algebra with three generators AW (3) was introduced and studied in [1].
The Casimir operator Q̂ commuting with all the generators K1, K2, K3 of the our algebra has the
expression

Q̂ = 1
2
{K3, K̃3}+ (q2 + q−2)C1K

2
1 +B{K1, K2}+ (q + q−1)2(D1K1 +D2K2) (22)

where the symbol {., .} stands for the anticommutator {a, b} = ab + ba and K̃3 is the ”dual”
generator:

K̃3 = [K1, K2]−q = q−1K1K2 − qK2K1 (23)

Thus, we considered algebraic treatment of hidden symmetry for the general case of addition
of nonlinear algebras including slq(2)⊕ slq(2) and two types of q-oscillator algebra. To stress this
aspect as the goal of this paper the simple example are given below. Also we are specially pointed
that for the first time many different special types of addition rule were discussed in [5]-[6].
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At the beginning it follows to note that famost Jordan-Wigner realization for SU(1, 1) or
SU(2), based on the two independent, but same structure set of harmonic oscillator operators and
its q-analog, is impossible in discussed approach. So, we can unusual add (but fully justified in
given approach!) two different types of q-oscillator algebra: eu−q and eu+q . In symbolic form this
non-commutative addition can be written both as

eu+q ⊕ eu−q = slq(2) or (a2, 0)⊕ (0, b1) = (a2, b1) (24)

and as
eu−q ⊕ eu+q =M(2) [10] or (0, d = b1)⊕ (d = a2) = (0, 0). (25)

According to the first variant of the addition we can consider the algebra slq(2) itself as the
resulting algebra from the two different types of q-Bose algebras that has its two parameters a2,
b1. Here hidden symmetry of the Hahn problem is determinated by a special case of Askey-Wilson
algebra AW (3):

[K1, K2]q = K3,

[K2, K3]q = BK2 + C1K1 +D1,

[K3, K1]q = BK1, (26)

where B,C1,2, D1,2 are the structure constants of the algebra (26):

B = (q − q−1)2p1 = (q − q−1)2(QBq
C0 +QAq

−C0),

C1 = (q − q−1)2t1 = (q2 − q−2)2a2b1, C2 = D2 = 0;

D1 = (q − q−1)2t0 = (q − q−1)2(q + q−1)(QBa2q
−C0 +QAb1q

C0), (27)

According to the results of the work [1] the overlaps between two eigenbases ψp and φs as the
Clebsch-Gordan coefficientss are expressed in terms of special case for the Askey-Wilson polyno-
mials [12] - q-analog of Kravchuk, Meixner, Charlier polynomials (basic hypergeometric function

3Φ2 or 1Φ2 for C1 = 0).
The second variant of the addition are represented the resulting algebra M(2) with only one

parameter d = a2 = b1. Here the hidden symmetry algebra of the Hahn problem is the following
special case of Askey-Wilson algebra AW (3):

[K1, K2]q = K3,

[K2, K3]q = BK2,

[K3, K1]q = BK1 +D2, (28)
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where B,C1,2, D1,2 are the structure constants of the algebra (28):

B = (q − q−1)2p1 = (q − q−1)2(QBq
C0 +QAq

−C0),

D2 = (q − q−1)2p2 = (q − q−1)2(q + q−1)d,

C1 = D1 = C2 = 0, (29)

According to the results of the work [1] the overlaps between two eigenbases ψp and φs as the
Clebsch-Gordan coefficients are expressed in terms of special case of q-Hahn polynomials.

4 The Clebsch-Gordan coefficients in the Hahn problem

On the base of previously reviewed hidden symmetry now let’s solve the the Hahn problem or find
the corresponding overlaps Clebsch-Gordan coefficients between two eigenbases ψp and φs for the
operatots K1, K2 respectively:

K1ψp = λpψp, K1 = q−∆ = q−A0+B0 ,

(30)

K2φs = µsφs, K2 = (qA+B− + q−1B+A−)q
∆ + p2q

2∆ + p1q
∆ + p0; (31)

Recall first that C = A⊕ B and the following relations hold

A0e
(µa)
na

= (na + µa)e
(µa)
na

, A+e
(µa)
na

= rna+1e
(µa)
na+1, A−e

(µa)
na

= rna
e
(µa)
na−1, (32)

B0e
(µb)
nb

= (nb + µb)e
(µb)
nb

, B+e
(µb)
nb

= rnb+1e
(µb)
nb+1, B−e

(µb)
nb

= rnb
e
(µb)
nb−1, (33)

C0e
(µc)
nc

= (nc + µc)e
(µc)
nc

, C+e
(µc)
nc

= rnc+1e
(µc)
nc+1, C−e

(µc)
nc

= rnc
e
(µc)
nc−1, (34)

The first set of eigenvectors ψp correspond to the elements of the direct product basis ψp ≡
e(µa)
na

⊗ e(µb)
nb

. This basis vectors of the direct product are characterized as eigenvectors of the
operators

Q̂A, A0, Q̂B, B0 (35)

with eigenvalues
Q(µa), na + µa, Q(µb), nb + µb (36)

respectively. The second set of eigenvectors φs is identified as should be to the coupled basis
elements e(µc)

nc
, which are the eigenvectors of

Q̂C , C0 ≡ A0 +B0, (37)
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with eigenvalues
Q(µc), nc + µc ≡ na + nb + µa + µb, (38)

respectively. The direct product basis is related to the coupled basis by a unitary transformation
whose matrix elements are called Clebsch-Gordan coefficients. These overlap coefficients will be
zero unless

na + nb ≡ N = nc + µc − µa − µb. (39)

Since nc is an integer, it follows that

µc = µa + µb + x; nc + x = na + nb (40)

where x ∈ {0, . . . , N} for a given value of N = na + nb.
We may hence write

e(µc)
nc

=
∑

na,nb

Cµc,nc

µa,na;µb,nb
e(µa)
na

⊗ e(µb)
nb

, (41)

where
Cµc,nc

µa,na;µb,nb
=
〈

e(µa)
na

⊗ e(µb)
nb

|e(µc)
nc

〉

(42)

are the Clebsch-Gordan coefficients of slq(2).
Let’s show that this Clebsch-Gordan coefficients are expressed by q-Hahn polynomials or ba-

sic hypergeometric function 3Φ2. Also note that the explicit expression for the Clebsch-Gordan
coefficients (42) is known [5]-[6], [11], hence only a short derivation using a recurrence relation is
presented. By definition of the coupled basis states (37), one has

Q(µc)C
µc,nc

µa,na;µb,nb
≡ [−c1q

2µc−1 − c2q
1−2µc ]Cµc,nc

µa,na;µb,nb
=
〈

e(µa)
na

⊗ e(µb)
nb

|Q̂C |e
(µc)
nc

〉

(43)

On the other hand, upon using (11) and the actions (32), i. e. substituting the expressions (7)
for C± and C0 into the right-hand side of (43), one finds

〈

e(µa)
na

⊗ e(µb)
nb

|Q̂C |e
(µc)
nc

〉

=
[

p2q
2(na−nb+µa−µb) + p1q

na−nb+µa−µb + p0
]

Cµc,nc

µa,na;µb,nb

+rna+1rnb−1q
na−nb+µa−µb+1Cµc,nc

µa,na+1;µb,nb−1 (44)

+rna−1rnb+1q
na−nb+µa−µb−1Cµc,nc

µa,na−1;µb,nb+1 (45)

For a given value of N = na + nb, taking na = n and nb = N − n, one can use the conditions
(40) to make explicit the dependence of C on x:

Cµc,nc

µa,na;µb,nb
= ω Pn(x;µa, µb;N),

8



where ω = Cµa+µb+x;N−x
µa,0;µb,N

and P0(x) = 1. With these definitions, it follows from (43) and (45) that
Pn(x) satisfies the three-term recurrence relation

λ(x)Pn(x) = Zn Pn(x) +Wn Pn−1(x) +Wn+1 Pn+1(x), (46)

where
λ(x) = (−c2q

1−2µa−2µb)(q−2x + c1q
4µa+4µb−2+2x)

and matrix elements Wn and Zn can be rewritten in the form:

W 2
n = q2(n−N+µa−µb−1)r2nr

2
n−N+1

≡ (1− q2n)(1− rq2n)(1− q2(n−N−1))(1− sq2(n−N));

Zn = (Dq2n + Eq4n) (47)

These recurrent relations with the q-dependence of Wn and Zn directly indicates on q-Hahn
polynomials [12]-[13]. Omitting the details of calculation, we present the some results concerning
the connection between parameters for the q-Hahn polynomial, the the additions algebras and the
slq(2) :

r =
a1
a2
q4α−2, s =

b2
b1
q4β, a1 ≡ −b2

D = a2q
−2(µa+µb)

[

q−2N + s−1rq2 + rq2(q2 + q−2N)
]

E = a1(q + q−1)q2(µa−µb−N)

(48)

and

Pn(x) = hn 3Φ2

(

q−2n, q−2x, s−1rq2x

q−2N , rq
; q2
∣

∣

∣

∣

∣

q2
)

, (49)

where hn is some normalization factor and 3Φ2 are the basic hypergeometric function (for details
see [5], [11]).

5 Conclusion

We have shown that a special case of Askey-Wilson algebra AW (3) with three generators serves
as a hidden symmetry underlying the Hahn problem for the quantum algebra slq(2). On the base
of this hidden symmetry the corresponding Clebsch-Gordan coefficients in terms of the q-Hahn
polynomials is found. Other most properties of these coefficients (symmetry, generating functions,
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recurrent relations) can be automatically derived for all the possible representation series, not just
the discrete series D+

µ discussed in the article.
In future publications, the authors intend to apply this result to find exactly solvable physical

problems.
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