виде расширений периэндотелиального пространства, активация эндотелиоцитов с вакуолизацией их цитоплазмы и краевым расположением ядерного хроматина в клетках эллипсоидов селезенки.

ЛИТЕРАТУРА

- 1. Белявский Е.М., Арчакова Л.И., Нетукова Н.И. Структурнофункциональная организация центра терморегуляции в нормальных условиях и при развитии лихорадки // Вегетативная нервная система в регуляции функций: Сб. ст. / Под ред. В.В.Солтанова.- Минск: Наука и техника, 1989.- С. 18-43.
- 2. Боголепов Н.Н. Методы электронномикроскопического исследования мозга.- М.: Изд-во 1-го Моск. мед. ин-та им. И.М.Сеченова, 1976.- 72 с.
- 3. Семененя И.Н. Субфебрилитет и лихорадка: сравнительнофизиологический аспект // Ж. эвол. биох. и физиол.- 1999.- N 4.- C. 324-329.
- 4. Солодков А.П. Эндотелиальный механизм стрессорных изменений сосудистого тонуса: Автореф. дис. ... д-ра мед. наук: 14.00.17 / Ин-т физиологии НАН Беларуси.- Минск, 1998.- 37 с.
- 5. Ferreira P.K., Campos M.M., Calixto J.B. The role of sensorial neuropeptides in the edematogenic responses mediated by B_1 agonist des-Arg 9 -BK in rats pre-treated with LPS // Regulatory Peptides.- 2000.- Vol. 89, N 1-3.- P. 29-35.

ВОЗРАСТНЫЕ ОСОБЕННОСТИ РЕГУЛЯТОРНЫХ ВЛИЯНИЙ ЭНДОТЕЛИЯ НА СОСТОЯНИЕ АРТЕРИАЛЬНОГО ТОНУСА

Соловьева Н.Г., Лобанок Л.М.

Институт радиобиологии НАН Беларуси, Минск

Введение

Существенная роль механизмах регуляции функциональной активности сосудов принадлежит эндотелию. Эндотелиоциты, высвобождая различные вазоактивные вещества констрикторной и дилататорной природы, оказывают модифицирующее влияние на состояние сосудистого тонуса. В последнее время в силу универсальности своих биологических свойств большое внимание к себе привлекает эндотелиальный NO. Монооксид азота, медиатором сложной клеточной взаимосвязи патогенетические Функциональных процессах, вовлекаться может В процессы при артериальной гипертензии, ишемии, атеросклерозе и других заболеваниях [1,2]. Уровень синтеза и активности NO определяется наличием

факторов его инактивации и функциональным состоянием эндотелия, которое существенно изменяется с возрастом. Возрастные дисфункции эндотелия приводят к нарушению деятельности сосудистой системы, и как результат этого, к патологии и увеличению числа сердечно-сосудистых заболеваний. Целью данного исследования являлось изучение возрастных особенностей регуляторных влияний эндотелия на состояние артериального тонуса.

Материалы и методы исследований

Исследования выполнены на 30 беспородных белых крысах-самках, из числа которых были сформированы следующие возрастные группы: 1-я неполовозрелые - 4 нед, 2-я половозрелые - 24 нед, 3-я старые - 72 нед. Объектом исследований являлись кольцевые сегменты нисходящей части грудной аорты. Для изучения роли эндотелия в функциональной модификации активности артериальных сосудов исследования проводились на изолированных сосудистых препаратах с интактным эндотелием и деэндотелизованных. При приготовлении сосудистых препаратов использовали классический метод работы с изолированными сосудами Furchgott в модификации [3].

Изучали сократительные и эндотелий-зависимые дилататорные реакции изолированных сегментов грудной аорты при стимуляции α -адренергических и М-холинергических рецепторов различными агонистами: норадреналином (НА, 10^{-9} - 5×10^{-7} М), фенилэфрином (ФЭ, 10^{-9} - 10^{-5} М) и карбахолином (КХ, 10^{-7} - 10^{-4} М), соответственно.

Обработка полученных показателей проводилась на ПЭВМ с использованием t-критерия Стьюдента.

Результаты и их обсуждение

На изолированных препаратах грудной аорты с интактным эндотелием показана возрастная модификация функциональной активности артериальных сосудов: установлено, что по мере увеличения возраста происходит снижение констрикторных эффектов НА во всем диапазоне действующих концентраций агониста. При стимуляции α_1 -адренергических рецепторов $\Phi \mathcal{F}$ у половозрелых и старых животных снижение сткратительных реакций отмечалось только при действии агониста в низких онцентрациях, по мере увеличения его содержания в растворе они всзрастали и превышали таковые у неполовозрелых крыс.

На деэндотелизированных сегментах онтогенетические особенности эффектов НА имели несколько иной характер: максимальный констрикторный ответ изолированных препаратов аорты зрелых и старых крыс превышал таковой у молодых особей. Однако, общая динамика развития сократительных реакций деэндотелизированных сегментов аорты эрелых и старых животных была различна: усиление сокращения, индуцируемого НА, у половозрелых крыс наблюдалось во всем диапазоне вействующих концентраций агониста, тогда как у старых животных

констрикторные реакции существенно возрастали только при высоких концентрациях НА. Сходная картина изменений была отмечена и при оценке сократительных реакций в ответ на стимуляцию α_1 -адренорецепторов Φ 3 Следовательно, можно предположить, что по мере полового созревания происходит увеличение прежде всего плотности, а не чувствительности α -адренергических рецепторных структур, в то время как при старении, напротив, отмечается значительное снижение их сродства к агонистам.

В целом, возрастные особенности адренергических констрикторных реакций аорты прежде всего связаны с различиями в функциональном состоянии и ингибирующем влиянии эндотелия. Так, сократительный ответ изолированных артериальных сегментов без эндотелия на действие НА является следствием стимуляции α₁-адренергических рецепторов ГМК. Интактный эндотелий имеет α_2 -адренорецепторы, стимуляция которых НА вызывает высвобождение монооксида азота (NO). Поэтому сосудистые эффекты НА представляют собой суммарный результат интеграции констрикторных реакций при стимуляции α_1 -адренорецепторов ГМК и дилататорных эндотелий-зависимых реакций, эндотелиальными α_2 -адренорецепторами. Кроме этого, эндотелиальный NO может высвобождаться и спонтанно, без стимуляции рецепторов на поверхности эндотелиоцитов различными нейрональными медиаторами базальный синтез релаксирующего фактора. Косвенным эндотелий-зависимой дилататорной компоненты сосудистых эффектов НА является величина ингибирующего влияния эндотелия на сократительные реакции. При этом основополагающая роль при концентраций НА принадлежит рецептор-стимулируемому высвобождению NO (через α₂-адренорецепторы), а при более высоких - базальной секрешии. Ингибирующее же влияние эндотелия при стимуляции α₁-адренорецепторов высвобождением определяется непосредственно базальным релаксирующего фактора.

Применяя данную концепцию к обсуждению роли ингибирующего влияния эндотелия, можно предположить, что по мере полового созревания наибольшему изменению подвергается базальное высвобождение NO по сравнению с рецептор-стимулируемым. Так, величина ингибирующего влияния эндотелия на сократительные реакции ГМК у неполовозрелых крыс при концентрации 5x10⁻⁹ М НА была ниже таковой у взрослых крыс только на 9%, а при концентрации 5×10^{-7} М - на 38 %. Усиление базального синтеза эндотелиального NO у половозрелых крыс подтверждается и результатами, полученными при оценке роли ингибирующего влияния эндотелия в ответ на стимуляцию а₁-адренергических рецепторов ФЭ. Возможная причина этого различия у молодых и зрелых особей в концентрации половых гормонов, способных увеличивать количество м-РНК для NO-синтеза. Установлено. что 17В-эстрадиола повышает введение женского полового гормона

прутриклеточную концентрацию свободного кальция в эндотелиальных гоетках сосудов, тем самым увеличивая Ca^{2+} -зависимую активность NO-пинтазы, и как следствие этого, концентрацию NO в различных тканях. Кроме того, действие эстрогена является активным не только в отношении эндотелия, но и ГМК. Такое действие эстрогена, определяющееся непосредственным его пиянием на сосудистую стенку и на липопротеиновый метаболизм, представляет собой защитный механизм сосудистой системы от чрезмерных понстрикторных влияний [4].

У старых животных отмечалось значительное повреждение как базального, так и рецептор-стимулируемого высвобождения эндотелиального NO при действии НА по сравнению со зрелыми крысами. Однако, сравнивая данные показатели с неполовозрелыми животными, на фоне существенного снижения рецептор-стимулируемого высвобождения NO уровень базального синтеза релаксирующего фактора был выше. Оценивая вклад эндотелия в ингибирование констрикторных реакций ГМК при стимуляции их α_1 адренергических структур ФЭ, у старых особей было также выявлено снижение базального высвобождения NO по сравнению со зрелыми, но не с молодыми. Такие изменения в реактивности сосудистой стенки аорты, рчевидно, можно объяснить возрастной модификацией эндотелиальных ункциональных маркеров, вовлекаемых в регуляцию сосудистого тонуса, в частности, изменением активности экспрессии NO-синтаз: при старении вначительно снижается уровень м-РНК конститутивной эндотелиальной NOсинтазы, в то время как уровень индуцибильной NO-синтазы значительно рвеличивается. Кроме того, возрастным изменениям подвергаются и сами втруктурные элементы сосудистой стенки [5]. Возникновение эндотелиальных мисфункций артериальных сосудов в целом повышают риск появления ватологических процессов при старении.

Известно. что вазоактивные свойства мускариновых агонистов практически высвобождением рецепторов полностью определяются ндотелиального NO. Таким образом, эндотелий-зависимые оценивая **м**лататорные эффекты КХ, можно судить об интенсивности рецептор-■имулируемого высвобождения NO. У неполовозрелых и зрелых крыс при жиствии КX не было выявлено существенных различий в величине NOопосредуемого расслабления изолированных сегментов аорты. Некоторое Усиление дилататорных реакций отмечалось у зрелых животных только при низких концентрациях агониста. Очевидно, данное увеличение связано с векоторым повышением чувствительности холинергических рецепторных труктур в процессе полового созревания. Таким образом, **Тед**положить, что изменения реактивности сосудов при действии агонистов минергических рецепторов, наблюдающиеся при половом созревании, об словлены прежде всего изменениями, затрагивающими в первую очередь иепторные структуры сосудов, а не модификацию процессов синтеза NO.

На поздних этапах онтогенеза происходит угнетение эндотелийзависимых дилататорных эффектов КХ по сравнению с неполовозрелыми и половозрелыми особями. Ослабление вазодилататорных реакций в данном случае можно объяснить возрастными дисфункциями эндотелиального слоя, в частности, значительным снижением синтеза NO. Понижение уровня NO происходить результате модификации либо в ферментного каскада его синтеза, либо за счет изменения интенсивности его инактивации. Считается, что одним из основных факторов инактивации NO выступают свободные радикалы и активные формы кислорода. При старении на фоне снижения антиоксидантной мощности организма сильно возрастает интенсивность свободно-радикальных процессов, приводящая к увеличению концентрации свободных радикалов. Кроме того, угнетение дилататорной функции эндотелиального NO может быть также дополнительным образованием различных эндотелиальных констрикторного действия (эндотелин, простагландины) [6].

Таким образом, эндотелиальные механизмы регуляции тонуса артериальных сосудов на разных стадиях онтогенеза отличительные особенности, которые, с одной стороны, обусловлены определенным уровнем базального рецептор-стимулируемого И высвобождения NO, а, с другой стороны - характерной для данного возраста чувствительностью и/или плотностью адренергических и холинергических рецепторов.

ЛИТЕРАТУРА

- 1. Luscher T.F., Vanhoutte P.M. The endothelium: modulator of cardiovascular function CRS Press. Boca Raton, Florida. USA. 1990. P.1-228.
- 2. Griendling K.K., Alexander R.W. Endothelial control of the cardiovascular system: recent advances // J. Faseb 1996. Vol. 10. P. 283-292.
- 3. Лобанок Л.М, Лукша Л.С. Эндотелиозависимая и эндотелионезависимая модификация вазоконстрикторных эффектов серотонина в ближайшие и отдаленные сроки пострадиационного периода // Доклады АН Беларуси.- 1994. Т. 38. № 4. С. 88-91.
- 4. Farhat M.Y., Lavigne M.C., Ramwell P.W. The vascular protective effects of estrogen // J. Faseb 1996. Vol. 10. P. 615-624.
- 5. Challa S., Nadau M., Philipp T., Batt F., Soubrie B., et.al. Circulating and cellular markers of endothelial dysfunction with aging in rat // J. Heart and Circ. Physiol.- 1997. Vol. 273. № 4. P. H1941-H1948.
- 6. Tshudi M.R., Barton M., Bersinger N.A., Moreau P., Cosentino F. et.al. Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. // J. Clin. Invest. 1996. Vol. 98. № 4. P. 899-905.