Таким образом, с точки зрения методических аспектов можно сделать вывод, что каждый учащийся имеет свои индивидуальные особенности, поэтому набор тем и дидактических материалов преподавателя (руководителя проекта) должен быть адаптирован под конкретные потребности самого учащегося и, конечно же тематики проекта, степени его сложности и детализированности. Индивидуализация обучения позволяет развивать потенциал учащихся и учитывать его уровень знаний и навыков.

Список использованных источников

- 1. Карпов, А. О. Как организовать систему исследовательского обучения школьников / А. О. Карпов // Школьные технологии. -2011. N = 3. C. 98-105.
- 2. Митусов, А. Гидравлические и пневматические системы (расчет и проектирование) : учеб. пособие / А. Митусов, О. Решетникова. 2-е изд., доп. Нур-Султан : Фолиант, 2017. 192 с.

УДК 378.147.88

Ю. Н. Матрунчик, Е. Г. Красько Y. Matrunchyk, E. Krasko

Белорусский национальный технический университет, УО «Национальный детский технопарк» (Минск, Беларусь)

ИНДИВИДУАЛЬНАЯ УЧЕБНАЯ ПРОГРАММА ПО НАПРАВЛЕНИЮ «РОБОТОТЕХНИКА» («СЕРВИСНЫЕ РОБОТИЗИРОВАННЫЕ СИСТЕМЫ»)

INDIVIDUAL CURRICULUM IN THE DIRECTION OF "ROBOTICS" ("SERVICE ROBOTIC SYSTEMS")

Излагаются методики обучения и способы реализации проекта исследовательского (изобретательского) характера по направлению «Робототехника» в рамках освоения индивидуальной учебной программы дополнительного образования с использованием информационно-коммуникационных технологий.

Teaching methods and ways of implementing a research (inventive) project in the direction of "Robotics" are outlined as part of the development of an individual curriculum of additional education using information and communication technologies.

Ключевые слова: дистанционное обучение; робототехника; программирование; электроника; инженер.

Keywords: distance learning; robotics; programming; electronics; engineer.

Индивидуальная учебная программа дополнительного образования одаренных детей и молодежи для дистанционной формы получения образования по направлению «Робототехника» («Сервисные роботизированные системы») разработана в соответствии с типовой учебной программой образовательной программы дополнительного образования одаренных детей и молодежи для дистанционной формы получения образования.

Данная форма образования используется в учебном процессе УО «Национальный детский технопарк» начиная с 2021 года. Программы для дистанционной (заочной) формы получения образования разрабатываются под конкретного учащегося (учащихся), исходя из индивидуальных характерных особенностей темы исследовательского проекта. В период

с 2021 года по настоящее время по направлению «Робототехника» было разработано девять таких программ.

Программа имеет социально-педагогическую и научно-техническую направленность и ориентирована на развитие личности учащегося, формирование и развитие творческих способностей, удовлетворение ее индивидуальных потребностей в интеллектуальном совершенствовании, повышение мотивации к научным исследованиям, профессиональную ориентацию.

Актуальность программы обуславливается неизменным ростом роботизации всех сфер жизнедеятельности человека, отраслей народного хозяйства и промышленности. Учащимся предоставляется возможность изобретения собственного законченного устройства, которое может послужить прототипом роботизированного технического средства (системы, комплекса и т. п.), актуальным в современном научном мире и способным на должном уровне соперничать с существующими аналогами на рынке робототехники. А также предоставляется возможность научиться создавать элементы конструкции сложных роботизированных средств по собственным цифровым трехмерным моделям с использованием современных САПР и 3D-печати и разрабатывать собственные управляющие программы микроконтроллеров при реализации аппаратно-программной части роботизированных систем.

Индивидуальная учебная программа главной своей целью ставит совершенствование творческих способностей, приобщение учащихся к современным технологиям и знакомство с тенденциями развития в области робототехники, развитие навыков в научной и практической деятельности.

Для достижения поставленной цели программы реализуются задачи ознакомления учащихся со способами создания сервисных роботизированных технических средств и робосистем — ассистентов, необходимых для улучшения качества жизни человека, помощи в различных сферах его жизнедеятельности, а также в быту, привития навыков и умений при разработке сервисных роботизированных мобильных или стационарных систем в ходе реализации проекта, формирования способности к принятию самостоятельных продуманных решений при реализации ранее запланированных задач, умения рационально организовывать свою научно-практическую и исследовательскую деятельность, стимулирования развития памяти учащегося, навыков логического мышления и способности анализировать научные факты, умения правильно обобщать и использовать приобретенные знания, развития его познавательных и личностных возможностей и способностей, формировать у учащегося культуру использования свободного времени.

Программа реализуется в учреждении образования «Национальный детский технопарк» в дистанционной форме получения образования с использованием информационно-коммуникационных технологий в режиме онлайн (рисунок 1).

Индивидуальная программа рассчитана на получение дополнительного образования одаренных детей и молодежи учащимися, проявившими способности к научно-исследовательской и изобретательской деятельности в процессе освоения учебной программы УО «Национальный детский технопарк» на очной смене.

Программа реализуется индивидуально по направлениям, определяемым детским технопарком по согласованию с наблюдательным советом, в дистанционной (заочной) форме получения образования.

Отбор учащихся для реализации программы происходит на основании наличия у них индивидуального проекта научно-исследовательского характера, результатов учебной деятельности при освоении образовательной программы дополнительного образования одаренных детей и молодежи для дневной формы получения образования.

Срок получения дополнительного образования одаренных детей и молодежи по направлению «Робототехника» определяется учебно-программной документацией образовательной программы дополнительного образования одаренных детей и молодежи и составляет 3 месяца.

Рисунок 1 – Онлайн-занятие с использованием Discord

Учебно-тематический план рассчитан на 120 учебных часов.

Продолжительность одного учебного часа составляет 45 минут.

Основной формой организации образовательного процесса при реализации содержания программы является занятие.

В процессе освоения программы учащейся УО «Национальный детский технопарк», Красько Елизаветой Георгиевной, был реализован проект изобретательского характера «Роботизированная мобильная система здорового сна и пробуждения».

В индивидуальной учебной программе предусмотрено формирование следующих знаний учащихся – методы реализации алгоритмов управления периферийными устройствами; принципы проектирования сервисных роботизированных систем; комплексное моделирование модулей ввода-вывода внешних устройств в сервисных роботизированных системах под управлением микроконтроллеров; способы разработки алгоритмов автоматизированного контроля и управления техническими средствами с использованием универсальных пакетов прикладных программ; способы программирования микроконтроллеров на языках высокого уровня; системы автоматизированного проектирования и 3D-моделирования элементов конструкции.

Учащиеся должны научиться использовать полученные знания, инновационные технологии, алгоритмическое, математическое, программное обеспечение для создания систем управления внешними устройствами от микроконтроллеров, микро-ЭВМ и ПК; производить расчеты и выбор аналогово-цифровых преобразователей и выполнять настройку микроконтроллеров на широтно-импульсную модуляцию сигналов; проводить оптимальный выбор микропроцессорных устройств в качестве устройства управления в разрабатываемой системе; проводить расчеты механической части элементов разрабатываемой роботизированной системы и элементов конструкции устройств; создавать принципиальные электрические схемы сервисных роботизированных мобильных систем; иметь навыки, связанные с использованием технических средств автоматизации, управлением потоками данных и работой с компьютером; владеть исследовательскими навыками; использовать информационные технологии для повышения эффективности обработки исходной информации и проведения математических вычислений; составлять техническую документацию (презентации, пояснительные записки, спецификации), а также отчетную документацию по установленным формам.

Основными формами проведения занятий по программе являются индивидуальное консультирование и сопровождение исследовательского проекта учащейся.

Таким образом, можно сделать вывод, что при реализации индивидуальной учебной программы с использованием различных методов обучения (объяснительно-иллюстративный, проблемный, частично-поисковый, репродуктивный, исследовательский, эвристический, проектный, игровой, метод проб и ошибок и др.) учащимся предоставляется возможность раскрыть свой творческий, изобретательский потенциал.

Список использованных источников

- 1. Матрунчик, Ю. Н. Микропроцессорные системы управления. Лабораторный практикум / Ю. Н. Матрунчик. Минск: БНТУ, 2020. 66 с. Режим доступа: https://rep.bntu.by/handle/data/70441?show=full. Дата доступа: 14.10.2022.
- 2. Матюшин, А. О. Программирование микроконтроллеров: стратегия и тактика / А. О. Матюшин. М. : ДМК Пресс, 2017. 355 с.

УДК 378.147

О. А. Минич

O. Minich

УО «Белорусский государственный педагогический университет имени Максима Танка (Минск, Беларусь)

СТРАТЕГИЧЕСКИЕ НАПРАВЛЕНИЯ ПОДГОТОВКИ ПЕДАГОГОВ К ПРИМЕНЕНИЮ ЭЛЕКТРОННОГО ОБУЧЕНИЯ

THE STRATEGIC DIRECTIONS OF TEACHER TRAINING FOR THE USE OF E-LEARNING

Стратегические направления подготовки педагогов к применению электронного обучения учитывают национальные приоритеты по развитию цифрового общества и цифровой трансформации образования в Беларуси.

The strategic directions of teacher training for the use of e-learning consider national priorities for the development of a digital society and the digital transformation of education in Belarus.

Ключевые слова: электронное обучение; подготовка педагогов.

Keywords: e-learning; teacher training.

Формирование системы электронного образования включено в число национальных приоритетов устойчивого развития белорусского общества до 2030 года и является одним из направлений совершенствования системы высшего образования и дополнительного образования взрослых.

Стратегические направления разрабатывались в контексте одной из современных тенденций развития педагогического образования, а именно направленность подготовки «педагогических кадров, способных к созданию и развитию информационно-образовательной среды для обучающихся, работе в условиях цифровизации образования» [1]. Согласно Концепции развития педагогического образования современный педагог должен быть готов к работе в условиях цифровизации образовательного процесса, обладать соответствующи-