М.Е. Михайлова¹, Е.В. Белая¹, Н.В. Казаровец², Н.М. Волчок¹, Н.А. Камыш¹

ГЕНЕТИЧЕСКОЕ МАРКИРОВАНИЕ ПРИЗНАКОВ МОЛОЧНОЙ ПРОДУКТИВНОСТИ КРУПНОГО РОГАТОГО СКОТА

¹ГНУ «Институт генетики и цитологии НАН Беларуси» Республика Беларусь, 220020, г. Минск, ул. Академическая, 27 ²УО «Белорусский государственный аграрный технический университет»

Введение

Достижения науки и разработка новых методов молекулярно-генетического анализа предоставили практическую возможность использования ДНК-маркеров в селекции племенных животных, что предполагает возможность определения их генетического потенциала. Генотипирование животных с помощью ДНК-маркеров позволяет найти корреляции между аллельными вариантами генов и хозяйственно-полезными признаками и целенаправленно вести селекцию на выявление и закрепление в популяции ценных аллелей [1-3].

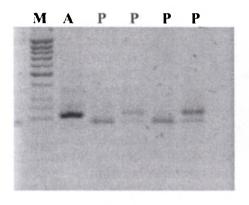
Применение ДНК-маркеров для ускорения решения селекционных задач получило на-

звание «селекция с помощью маркеров или маркер-сопутствующая селекция (MAS - marker assisted selection)». ДНК — маркеры — это аллельные варианты генов, напрямую или косвенно связанные с продуктивными и адаптационными признаками животных, с устойчивостью или восприимчивостью к заболеваниям. Выявление предпочтительных с точки зрения селекции вариантов таких генов позволяет дополнительно к традиционному отбору животных, например, по содержанию жира в молоке, уровню удоя, проводить оценку особей по генотипу.

Материалы и методы исследования

Для анализа в качестве биологических образцов использовалась кровь или сперма исследуемых животных. ДНК выделяли из крови животного фенольно-хлороформовым методом и в дальнейшем анализировали с помощью метода полимеразной цепной реакции (ПЦР) с последующим рестриктным анализом ампликонов по полиморфизму длин рестриктных фрагментов (ПДРФ) [1]. Выделение ДНК из спермы осуществлялось методом солевой экстракции с некоторыми нашими модификациями [3]. Примерное количество выделенной ДНК составляет 2-3 мкг. Полимеразная цепная реакция проводилась в амплификаторе «Віотета Т-сусler».

Для амплификации фрагмента гена гормона роста GH использовали следующие праймеры [4]:


G-GH S: 5' ttc ggc ctc tct gtc tct ccc t-3'; G-GH R: 5'-agg cgg egg cac ttc atg ac-3'. Длина амплифицированного фрагмента составляет 208 пн. Рестрикция проводилась с использованием рестриктазы Alul. Продукты рестрикции разделяли в 2 % агарозном геле. Результаты генотипирования представлены на электрофореграмме (Рис.1а).

Для ДНК-типирования полиморфных вариантов гена *Pit-1* использовали праймеры следующего состава [5]:

Pit-1 S: 5'-aaa cca tea tct ccc ttc tt-3';

Pit-1 R: 5'-aat gta caa tgt gcc ttc tga g-3'.

Рестрикция проводилась с помощью рестриктазы *Hinf1*. Результаты генотипирования представлены на рисунке 16. Наличие на электрофореграмме двух полос размером 244 и 207 пн. соответствовует генотипу ВВ-*Pit-1*; трех полос размером 451, 244 и 207 пн. – генотипу АВ-*Pit-1* и одной полосы размером 451 пн. – генотипу АА-*Pit-1* (Рис.16).

M LL LL LV LL LV

M AA BB BB BB BB AB AB AA — 451 пн — 244 пм 207 пн

16

Рис. 1. Электрофореграммы ДНК-типирования крупного рогатого скота
1a. Электрофореграмма продуктов амплификации и рестрикции гена гормона роста (GH)
в 2% агарозном геле. Условные обозначения: маркер 50 br DNA Lader (Fermentas);
А-продукты амплификации, Р-продукты рестрикции, VV-, LV-, LL – генотипы.
16. Электрофореграмма продуктов рестрикции гена Pit-1. Условные обозначения: маркер 50 br DNA Lader
(Fermentas); Р-продукты рестрикции, AA, AB и BB – генотипы.

Выявление ассоциации аллельных вариантов генов *GH* и *Pit-1* с молочной продуктивностью, а именно, общим удоем молока за 305 суток, содержанием жира и белка в молоке (%),

проводилось на основании данных племенных карт. Достоверность полученных результатов была проверена с помощью статистических методов оценки достоверности.

Результаты и обсуждение

1. Полиморфизм гена гормона роста (GH) и его связь с молочной продуктивностью крупного рогатого скота

В работах многих исследователей выполнен анализ распределения аллельных вариантов ряда структурных генов, полиморфизм которых часто оказывается связанным с основными показателями молочной продуктивности крупного рогатого скота [3, 6, 7]. Выявлены аллельные варианты гена гормона роста *GH*, ассоциированные с высоким удоем и повышенной жирностью молока [6, 8, 9].

Ген гормона роста привлекает внимание исследователей как потенциальный маркер молочной продуктивности. Соматотропин или гормон роста — один из главных регуляторов развития млекопитающих. Гормон роста синтезируется в передней доле гипофиза и регулирует интенсивность метаболизма белков, участвующих в формировании мышечных тканей. Гормон стимулирует транспорт аминокислот в мышечные клетки, кроме того, усиливает син-

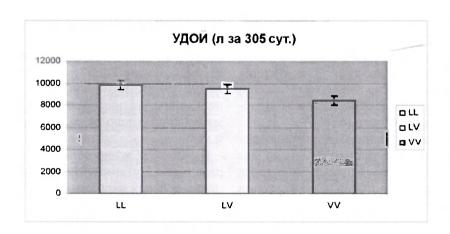
тез белков, участвующих в инициации и поддержании лактации у млекопитающих [4,9].

Ген гормона роста *GH* расположен на участке хромосомы 19q26-qter, состоит из пяти экзонов, включающих около 1800 пар оснований. Продуктом экспрессии этого гена является один из представителей семейства белковых гормонов — гормон роста, который представляет собой одиночный полипептид, состоящий из 190-191 аминокислот. Гормон соматотропин необходим для постнатального развития и нормализации углеводного, липидного, азотного и минерального обменов. [4, 5].

В гене *GH* идентифицировано несколько различных мутаций [9]. Выявлена ассоциация полиморфных вариантов гена соматотропина с показателями продуктивности (живая масса, молочная продуктивность, содержание жира в молоке). Наиболее изучена взаимосвязь мутации в пятом экзоне с продуктивность крупного рогатого скота [10]. Эта мутация представляет собой С—G трансверсию в нуклеотидной по-

следовательности 2141, в результате которой происходит замена аминокислоты лейцин (L) на валин (V) в 127 позиции полипептида. Таким образом, этот одиночный нуклеотидный полиморфизм приводит к образованию двух аллелей: L-GH и V-GH. По данным ряда исследователей L-аллель гена гормона роста является предпочтительным для популяции, так как обнаружена положительная корреляция с количественными признаками продуктивности крупного рогатого скота [4, 10, 11].

Нами проведен анализ генетической структуры черно-пестрой породы крупного рогатого скота по частоте встречаемости генотипов и аллелей гена гормона роста (*GH*). Установлено, что среди исследованных быковпроизводителей Гомельского, Витебского и Минского племпредприятий, а также коров основного селекционного стада Минского племпредприятия преобладает *L*-аллель, частота встречаемости которого составляет 83-84 % соответственно (Табл.1).


Таблица 1
Генетическая структура популяции быков-производителей и быкопроизводящих коров черно-пестрой породы по гену *GH*

Кол-во особей (п)	Ген гормона роста СН							
	Частота вст	речаемости ген	Частота встречаемости аллелей					
	LL	LV	VV	L	V			
422♂	72,25	24,08	3,67	0,84±0,017	0,16±0,017			
42♀	66,66	33,34	0	0,83±0,057	0,17±0,057			

Изучено влияние полиморфизма локуса GH на голштинской, голштино-фризской и чернопестрой породах крупного рогатого скота [10-12]. Проанализирована связь полиморфизма гена GH с основными показателями молочной продуктивности. Доказано, что животные с гомозиготным генотипом LL-GH, а также гетерозиготные особи LV-GH — имеют более высокие показатели молочной продуктивности по срав-

нению с обладателями гомозиготных генотипов (VV-GH) [9,10,11,12]. Выявлена связь полиморфизма гена GH с удоем и содержанием жира в молоке. По этим показателям генотипы LL GH превосходили генотипы VV. GH [9-12].

Мы исследовали такие показатели молочной продуктивности, как общий удой молока за 305 суток и процентное содержание жира и белка в молоке (Рис. 2, 3, 4).

Рис. 2. Влияние различных аллельных вариантов гена гормона роста GH на общий удой (л) за 305 суток лактации.

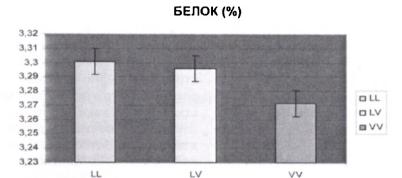
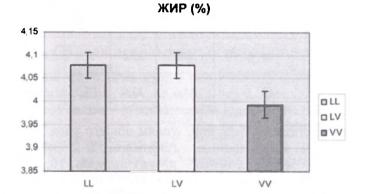



Рис. 3. Влияние различных аллельных вариантов гена гормона роста GH на содержание белка в молоке

Достоверно установлено, что у коров с LL гомозиготным генотипом по гену GH общий удой молока выше на 8,1 % (P<0,05) (Рис. 2). Содержание белка и жира в молоке выше (< 3,3 % и < 4,06 % соответственно), чем у особей с генотипом VV-GH (P<0,05) (Рис. 3, 4).

Таким образом, полученные результаты научных исследований позволяют утверждать, что в изученной популяции крупного рогатого скота выявлено положительное влияние L-аллеля гена GH на общий удой, содержание белка и жира в молоке.

Рис. 4. Влияние различных аллельных вариантов гена гормона роста GH на содержание жира в молоке (%).

2. Полиморфные варианты гена гипофизарно-спенифического фактора транскрипции (pit-1), ассоциированные с молочной продуктивностью крупного рогатого скота

Интенсивность экспрессии гена гормона роста, в свою очередь, находится под контролем клеток гипоталамуса, выделяющих стимулирующий белок — рилизинг-фактор. Гипофизарно-специфический фактор транскрипции *Pit1*, являющийся регуляторным геном, осуществляет контроль транскрипции генов пролактина, тиротропина и гормона роста, а также играет важную роль в пролиферации и дифференциации клеток гипофиза, секретирующих эти гормоны. Ингибирование синтеза Рit1 приводит к заметному снижению экспрес-

сии генов пролактина и гормона роста и значительному снижению пролиферации клеточных линий, продуцирующих эти гормоны. Поэтому полиморфизм гена *Pit1* изучается как маркер молочной продуктивности крупного рогатого скота [11, 12]. Очевидно, мутации гена *Pit1*, сопровождаемые нарушением структуры его продукта, могут оказывать существенное влияние на экспрессию контролируемых им генов и, таким образом, изменять фенотипическое проявление признаков молочной продуктивности крупного рогатого скота.

Цель нашего исследования заключалась в изучении *Hinf1*-полиморфизма в шестом экзоне гена *Pit1* у представителей черно-пестрой породы крупного рогатого скота, разводимых в республике.

Проведен анализ генетической структуры популяций крупного рогатого скота в Госплемпредприятиях Минской и Витебской областей по гену гипофизарно-специфического фактора транскрипции *Pit1*. Выявлено, что частота предпочтительного генотипа AA-*Pit1* в исследуемых образцах животных Витебского племпредприятия составляет 11 %, а Минского — почти в два раза меньше — 5,6 %. Это согласуется с данными польских исследователей, которые показали связь аллельных вариантов

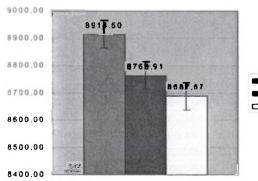
гена Pit1 с молочной продуктивностью [10].

Наиболее ценным генотипом, ассоциированным с повышенным удоем молока, является генотип АА-*Pit-1*. Анализ генетической структуры черно-пестрой породы крупного рогатого скота в некоторых племенных хозяйствах Республики Беларусь существует, что частота предпочтительного генотипа АА-*Pit1* в популяции Витебского племпредприятия составляет 11 %, а Минского — почти в два раза меньше — 5,5 % (Табл. 2).

Таблица 2

Генетическая структура популяций быков-производителей и быкопроизводящих коров белорусской черно-пестрой породы по локусу *Pit-1*

	Количество особей (п)	Частота встречаемости					
Принадлежность		генотипов, %			аллелей		
		BB	AB	AA	В	A	
РСУП «Витебск племпредприятие»	118	45,8	43,2	11,0	0,67±0,043	0,33±0,043	
РСУП «Минск племпредрприятие»	90	58,9	35,6	5,5	0,77±0,044	0,23±0,044	
РУСП «Племенной завод Красная звезда»	42	47,6	33,4	19,0	0,64±0,074	0,36±0,074	


Самая высокая частота генотипа АА была выявлена в популяции КРС РУСП «Племенной завод Красная звезда», которая составляет 19 %.

Наибольший уровень продуктивности по такому показателю, как общий удой, имеют животные с генотипом $Pit-1^{AA}$, по сравнению с гомозиготными особями BB- Pit-1 генотипом.

Из полученных данных очевидно, что наибольший уровень продуктивности по показа-

телям общего удоя характерен для особей с генотипом $Pit-1^{AA}$, что согласуется с данными других авторов [10, 11, 12]. Особи с генотипом $Pit-1^{BB}$ имеют наименьшие показатели по удою. В частности, нами показано, что особи с генотипом $Pit-1^{AA}$ дают в среднем на 2,6 % больше молока за 305 суток лактации по сравнению с особями, обладающими генотипом $Pit-1^{BB}$ (P<0,05) (Рис. 5).

Pit1-A A

Pit1-A B

Pit1-B B

Рис.5. Влияние различных аллельных вариантов гена рилизинг-фактора Pit-1 на общий удой (л) за 305 суток лактации.

Нашими исследованиями не было выявлено статистически достоверных различий между обладателями $Pit-1^{AA}$ и $Pit-1^{BB}$ генотипов по содержанию белка и жира в молоке.

Исследования по влиянию полиморфизма генов гормона роста и гипофизарно-специфического фактора транскрипции на молочную продуктивность крупного рогатого скота будет продолжено.

Заключение

Проведен анализ генетической структуры черно-пестрой породы крупного рогатого скота по частоте встречаемости предпочтительных генотипов основных генов соматотропинового каскада:

гена гормона роста (GH);

гена гипофизарно-специфического фактора транскрипции (*Pit1*).

Показано, что среди исследованных быковпроизводителей Витебского и Минского племпредприятий, а также коров основного селекционного стада Минского племпредприятия преобладает L-аллель гена гормона роста (GH). Установлено положительное влияние L-аллеля гена *GH* на общий удой, содержание белка и жира в молоке.

Изучена связь молочной продуктивности КРС с полиморфными аллельными вариантами гена *Pit 1* у крупного рогатого скота. Выявлено положительное влияние AA-генотипа гена *Pit1* на общий удой молока.

Таким образом, связь полиморфизма генов гормона роста и гипофизарно-специфического фактора транскрипции с хозяйственно-ценными признаками служит основанием использовать *GH* и *Pit-1* в маркер-сопутствующей селекции, направленной на повышение молочной продуктивности крупного рогатого скота.

Список используемых источников

- 1. Калашникова, Л.А. ДНК-технология оценки сельскохозяйственных животных / Л.А. Калашникова, И.М. Дунин, В.И Глазко. Москва: ВНИИплем, 1999. 148 с.
- 2. Эрнст, Л.К. Биологические проблемы животноводства в XXI веке / Л.К. Эрнст, Н.А. Зиновьева Москва: PACXH, 2008. 508 с.
- 3. Введение в молекулярную генную диагностику сельскохозяйственных животных / Н.А. Зиновьева [и др.]; под общей редакцией Л.К. Эрнста. Москва: ВИЖ, 2002. 112 с.
- 4. Jianbo, Y. Flan Hayes and Urs Kuhnlein Sequence Variations in the Bovine Growth Hormone Gene Characterized by Single-Strand Conformation Polymorphism (SSCP) Analysis and Their Association with Milk Production Traits in Holsteins / Y. Jianbo [et al.] // Genetics. 2004. Vol. 144. P. 1809–1816.
- 5. Woollard, J. Rapid communication: Hinfl polymorphism at the bovine Pit locus. / J. Woollard [et al.] // J. Anim. Sci.— 1994. Vol. 72. P. 3267.
- 6. Сулимова, Г.Е., Мониторинг генетической структуры пород и популяций крупного рогатого скота России по локусам хозяйственнополезных признаков / Г.Е. Сулимова, С.О. Туркова, С.Р. Хатами // Молекулярная генетика,

- геномика и биотехнология: материалы междунар. науч.-практ.конф., Минск, 24–26 ноября 2004 г.: в 1 ч. / ИГЦ НАНБ; редкол.: Н.А. Картель [и др.]. –. Минск, 2004. С. 98–100.
- 7. Калашникова, Л.А. Селекция XXI века: использование ДНК-технологий / Л.А. Калашникова, И.М. Дунин, В.И. Глазко; под ред. Калашниковой Л.А. [и др.].- Московская область: Лесные поляны, ВНИИплем. 2001. 34 с.
- 8. Михайлова, М.Е. Использование ДНКтехнологий для генетического маркирования хозяйственно-ценных признаков и идентификации скрытых носителей иммунодефицита крупного рогатого скота / М.Е.Михайлова, Е.В.Белая, С.Г. Голенченко, Н.М. Волчок, Н.А.Камыш // Современные методы генетики и селекции в животноводстве: материалы междунар. науч. конф., Санкт-Петербург, 26–28 июня 2007 г. / С.-Пт. ВНИИГРЖ; редкол.: П.Н. Прохоренко [и др.]. — Санкт-Петербург, 2007. — С. 267–273.
- 9. Lucy, M.C. Variants of somatotropin in cattle: gene frequencies in major dairy breeds and associated milk production / M.C. Lucy [et al.] // Domestic Animal Endocrinology. –1993. Vol.10. P. 325–333.
- 10. Zvierzchowski, L. An association of growth hormone, κ-casein, p-lactoglobulin, leptin and

Pit-I loci polymorphism with growth rate and carcass traits in beef cattle / L. Zvierzchowski // Animal Science Papers and Reports.— 2001. — Vol. 19.— P. 65–78.

11. Pawar, R. S. Growth hormone gene polymorphism and its association with lactation yield in dairy cattle / R. S. Pawar [et al.] //Indian Jour-

nal of Animal Sciences.— 2007— Vol.11, № 9.— P. 884—888.

12. Renaville, R. Pit-1 gene polymorphism, milk yield, and conformation traits for Italian Holstein-Friesian bulls / R. Renaville [et al.] //J. Dairy Sci. −1997. Vol. 80, № 12.–P. 3431–3437.

Дата поступления статьи 4 декабря 2008 г.