П. Б. Кац, А. В. Кудравец Р. Kats, A. Kudravets

Брестский государственный университет имени А. С. Пушкина (Брест, Беларусь)

СРАВНЕНИЕ ТОЧНОСТИ ВАРИАНТОВ УКОРОЧЕННОГО МОДИФИЦИРОВАННОГО МЕТОДА ЛИДЖИАНА – КИНГА - ЖЕНГМИНГА 3A3D, 2A4D И 2A3D ДЛЯ ВОДОРОДА, ГЕЛИЯ, ЛИТИЯ, БЕРИЛЛИЯ И БОРА

COMPARISON OF ACCURACY
OF SHORTENED VARIANTS MODIFIED LIJIAN –
QING – ZHENGMING METHOD 3A3D, 2A4D
AND 2A3D FOR HYDROGEN, HELIUM, LITHIUM,
BERYLLIUM AND BORON

Рассчитаны коэффициенты вариантов укороченного метода LQZs 3a3d, 2a4d и 2a3d для первых пяти элементов таблицы Менделеева. Вычислена усредненная по энергиям относительная погрешность. Погрешность растет с номером элемента. Для всех рассмотренных элементов средняя погрешность метода LQZs2a4d в 2-3 раза выше погрешности метода LQZs3a3d. При переходе к LQZs2a3d погрешность возрастает незначительно. Для бора $\langle ER \rangle$ незначительно превышает 0,01%. Таким образом, для легких элементов перспективным является использование метода LQZs2a3d, в котором используется 6 коэффициентов для элемента вместо тридцати, как в традиционном методе LQZ.

Coefficients of variants of the shortened method CLASS 3a3d, 2a4d and 2a3d for the first five elements of the periodic table are calculated. The energy-averaged relative error is calculated. The error increases with the element number. For all the considered elements, the average error of the LQZ_{S2a4d} method is 2-3 times higher than the error of the LQZ_{S3a3d} method. When switching to LQZ_{S2a3d}, the error increases slightly. For boron, it slightly exceeds 0,01%. Thus, for light elements, it is promising to use the

LQZS2a3d method, which uses 6 coefficients for an element, instead of thirty, as in the traditional LQZ method.

Ключевые слова: рассеяние позитронов, моттовское сечение рассеяния, укороченный метод LQZ, легкие элементы.

Keywords: positron scattering, Mott differential cross section, shortened LQZ method, light elements.

В работах [1–2] был разработан метод аналитической аппроксимации моттовского сечения рассеяния. Этот метод позволяет легко вычислять моттовское сечение рассеяния, а также интегралы, его включающие. Такие интегралы требуются для расчетов повреждающего воздействия высокоэнергетических частиц на материалы. Мы называем данный метод LQZ — по первым буквам фамилий авторов [1]. В методе LQZ для каждого химического элемента надо вводить 30 коэффициентов dz. В [2] показано, что точность метода для позитронов очень высока — погрешность для всех порядковых номеров элементов до 118 менее 0,05 %. В связи с этим мы предложили укороченный метод, в котором можно обойтись меншим числом коэффициентов, сохраняя высокую точность.

В работах [1–2] был рассмотрен метод LQZ_S тремя коэффициентами a_j (LQZ_{S3a} для гелия для разного числа L). Было показано, что с уменьшением L погрешность метода растет, но остается крайне малой для L = 3.

В предыдущем докладе мы рассмотрели метод LQZ_{S2a} в применении к оганесону (Z=118) и показали, что точность LQZ_{S2a4d} выше, чем LQZ_{S3a3d} .

В этой работе мы сравним точность вариантов метода 3a3d, 2a4d и 2a3d для пяти первых элементов таблицы Менделеева. Ниже в таблицах 1-3 приведены коэффициенты $d_Z(j,k)$ для соответствующих методов. Коэффициенты метода 3a3d для гелия см. в [2].

*Таблица 1 – 3а*3d

j/k	1	2	3	
Водород H (Z = -1)				
1	-0,010728	-0,016210	$1,40328 \cdot 10^{-5}$	
2	-0,215621	-0,656731	0,499967	
3	$-4,34075 \cdot 10^{-5}$ $-9,39840 \cdot 10^{-5}$		$-6,53267 \cdot 10^{-5}$	
Литий Li (Z = - 3)				
1	-0,031528	-0,048666	$2,15896 \cdot 10^{-4}$	
2	-0,200276	-0,633152	-0,499958	
3	$-3,61660 \cdot 10^{-4}$	$-8,35019 \cdot 10^{-4}$	$-5,24814\cdot 10^{-4}$	
Бериллий Ве $(Z = -4)$				
1	-0,041585	-0,064927	$3,77207 \cdot 10^{-4}$	
2	-0,192761	-0,622528	-0,494080	

j/k	1	2	3	
3	$-6,17812\cdot 10^{-4}$	$-1,473049 \cdot 10^{-3}$	$-9,00992 \cdot 10^{-4}$	
Бор В (Z=-5)				
1	-0,051401	-0,081210	$5,05178 \cdot 10^{-4}$	
2	-0,185059	-0,608848	-0,500173	
3	$-9,26340\cdot 10^{-4}$	$-2,281206\cdot 10^{-3}$	$-1,379587 \cdot 10^{-3}$	

*Таблица 2 – 2a*4d

j/k	1	2	3	4		
	Водород H (Z = -1)					
1	-0.010686	-0.016119	$7,20321 \cdot 10^{-5}$	$-1,41484\cdot 10^{-5}$		
2	-0,215621	-0,656731	-0.500093	$2,49065 \cdot 10^{-5}$		
	Гелий He (Z= - 2)					
1	-0.021080	-0.032065	$2,95793 \cdot 10^{-4}$	$-7,31987 \cdot 10^{-5}$		
2	-0.208287	-0.645813	-0.500387	1,68881 · 10 ⁻⁴		
			Литий Li (Z = - 3)			
1	-0.0311831	-0.0478585	$6,80023 \cdot 10^{-4}$	$-1,20147\cdot 10^{-4}$		
2	-0.201021	-0.634916	-0.500897	$4,68532 \cdot 10^{-4}$		
Бериллий Be ($Z = -4$)						
1	-0.040998	-0.063528	$1,22907 \cdot 10^{-3}$	$-1,02500 \cdot 10^{-5}$		
2	-0.193915	-0.624209	-0.501640	$8,79341 \cdot 10^{-4}$		
Бор В (Z= -5)						
1	-0.050528	-0.079103	$1,94188 \cdot 10^{-3}$	$4,55442 \cdot 10^{-3}$		
2	-0.186968	-0.613668	-0.502625	$1,29434 \cdot 10^{-3}$		

Таблица 3 – 2*a*3d

j/k	1	2	3			
Водород Н (Z = -1)						
1	-0.010686	-0.016121	$7,60062 \cdot 10^{-5}$			
2	-0.215710	-0.656923	-0.500101			
Гелий He (Z= - 2)						
1	-0.021081	-0.032074	$3,16354 \cdot 10^{-4}$			
2	-0.208284	-0.645792	-0.500434			
	Литий Li (Z = - 3)					
1	-0.031185	-0.047874	$7,13771 \cdot 10^{-4}$			
2	-0.201015	-0.634857	-0.501029			
Бериллий Be $(Z = -4)$						
1	-0.040999	-0.063529	$1,23195 \cdot 10^{-3}$			
2	-0.193902	-0.624099	0.501887			
Бор В (Z=-5)						
1	-0.050522	-0.079046	$1,81395 \cdot 10^{-3}$			
2	-0.186950	-0.613505	-0.502989			

В таблице 4 приводится усредненная по скоростям относительная ошибка $\langle ER \rangle$ для рассмотренных элементов.

 $ag{ER}$,%

	LQZ	LQZ _{S3a3d}	LQZ _{S2a4d}	LQZ _{S2a3d}
Н	4,96·10 ⁻⁵	1,52·10 ⁻⁴	5,83·10 ⁻⁴	6,03·10 ⁻⁴
Не	3,02·10 ⁻⁴	7,46·10 ⁻⁴	2,26·10 ⁻³	2,29·10 ⁻³
Li	7,09·10 ⁻⁴	1,75·10 ⁻³	4,96·10 ⁻³	5,08·10 ⁻³
Be	1,31·10 ⁻³	3,27·10 ⁻³	8,62·10 ⁻³	8,95·10 ⁻³
В	2,08·10 ⁻³	5,39·10 ⁻³	1,32·10 ⁻²	1,39·10 ⁻²

Из таблицы видно, что погрешность растет с номером элемента. Для всех рассмотренных элементов средняя погрешность метода LQZ_{S2a4d} в 2—3 раза выше погрешности метода LQZ_{S3a3d} . При этом переход к LQZ_{S2a3d} приводит к незначительному возрастанию погрешности. Даже при использовании LQZ_{S2a3d} , где используется всего 6 коэффициентов, погрешность очень мала. Таким образом, для легких элементов перспективным является использование метода LQZ_{S2a3d} , в котором для данного химического элемента надо вводить не 30, а только 6 значений $d_Z(j,k)$.

Список использованных источников

- 1. Lijian, T. Analitic Fitting to the Mott Cross Section of Electrons / T. Lijian, H. Qing, L. Zhengming // Radiat. Phys. Chem. − 1995, − V.45, № 2, − P. 235–245.
- 2. An Expression for the Mott Cross Section of Electrons and Positrons on Nuclei with Z up to 118 / M.J Boschini et al // Radiation Physics and Chemistry. 2013. V.90. P. 39–66.
- 3. Кудравец А.В. Расчет коэффициентов укороченного модифицированного метода LQZ для гелия / А.В. Кудравец // Инновационные подходы к обучению физике, математике, информатике : материалы Междунар. студ. науч.-практ. интернет-конф., г. Минск, 22 апреля 2022 г. / Белорус. гос. пед. ун-т им. М. Танка; редкол. С. И. Василец, А. Ф. Климович (отв. ред.), В. Р. Соболь [и др.]. Минск : БГПУ, 2022. С. 41–44.
- 4. Кудравец, А.В. Варианты укороченного модифицированного метода LQZ для гелия / А.В. Кудравец // «НИРС-2022. Физика: научный и методический аспекты»: сб. материалов факультетской студенческой научной конференции, Брест, 26-27 апреля 2022 г. / Брест. гос. ун-т им. А. С. Пушкина; под общ. ред. А. В. Демидчика. Брест: БрГУ, 2022. С. 9.