Литература

I. Физика сегнетоэлектрических явлений. Под ред. Смоленского Г.А., Л., 1985.

2. Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика. М., 1974.

3. Пронин И.П., Меловой А.И., Исупов В.А. О параметрах закона Кюри-Вейсса у твердых растворов цирконата и татаната свинца. // ФТТ. - 1977. Т. 19. - с. 1515.

4. Панич А.Е., Куприянов М.Ф. Физика и технология сегнетокерамики, Ростов-на-Дону, РГУ, 1989.

5. Ролов Б.Н. Размытые фазовые переходы, Рига, 1972.

УДК 539.2.211

С.А.Василевский, В.И.Януть

влияние групп $\left(P U_{3} F \right)^{2}$ и $L - \alpha$ -аланина на экзоэмиссионные свойства кристалюв TGSFF и ATGSPF

Экзоэлектронная эмиссия (ЭЭ) — высокочувствительный метод исследования, основанный на регистрации параметров нестационарного электронного потока с повержности твердого тела. Метод положительно зарекомендовал себя применительно к исследованию ряда процессов в сегнетоэлектри. ах: пиро- и пьезоэффекта, фазовых превращений, процессов переполяризации [I].

В настоящей работе изучен экзоэмиссионный эффект, возникаший при переполяризации монокристаллов CSPF и ATGSPF. Монокристаллы TGSPF и ATGSPF выращивались из водных растворов методом циркуляции при постоянных температурах роста (t_p) и пересыщениях [2].

Изучение ЭЭ проводилось при переполяризации кристаллов в синусоидальном электрическом поле, частотой 50 ln на установке описанной в [3], что позволило изучать процессы переключения на свободной от электродов поверхности. Контроль пропессов

51

переключения осуществлялся по петлям диэлектрического гистере-

Типичные зависимости плотности эмиссионного тока от напряженности электрического поля представлены на рис. І. Параметры E_n – пороговое поле, E_{κ} – поле, при котором достигается наснщение, j_{μ} – плотность эмиссионного тока наснщения, характеризующие экзоэмиссионные свойства кристаллов *TGSPr* и*ATGSPF* приведены в табл. I.

Напряженность поля \mathcal{E}_n , с которого начинается эмиссия электронов зависит от соцержания $\mathcal{H}_2 \rho_{0_3} F$ в растворе и условий роста кристаллов. Увеличение соцержания $\mathcal{H}_2 \rho_{0_3} \overline{r}$ в растворе и уменьшение температуры роста приводит к возрастанию \mathcal{E}_n , что в большей степени выражено для кристаллов *ATGSPF* (табл. \overline{i} , рис. I).

При дальнейшем увеличении поля наблюдается увеличение плотности эмиссионного тока / , который при некотором значении поля Е = Н., достигает своего максимального значения /н . Значения Е, возрастают при увеличении содержания Н2 РО3 F в растворе и понижении to, достигая ~ 18 кВ/см у кристаллов АТСЗРЕ ($t_p = 20^{\circ}C$, 60 мол. % $H_2 PO_3 F$ в растворе). Значения E_{μ} у кристаллов *TGSPF* меньше, чем у ATGSPF (табл. D. Как и пороговые поля Еп, так и поля насыщения Ен в случае наблюдения эмиссионного эффекта при переполяризации кристаллов TGSPF и ATGSPF , значительно превышают соответствующие значения Е, и Е, , наблюдаемые при переполяризации кристаллов с напыленными электродами (схема Сойера-Тауэра) [2]. Упеличение значений En и En нами связывается с наличием вакуумного зазора между поверхностью кристалла и микроканальной пластины (МКП), что приводит к возникновению дополнительной емкости -- повехность кристалла -- МКП.

Плотность тока насыщения j_{μ} при переполяризации кристаллов более чем на поряцок вышо максимальной плотности эмиссионного тока, достигаемого при пироэффекте [4]. Наибольшие значения j_{*} собнаружены у кристаллов, выращенных при высоких (53°С) температурах из растворов с IO мол. $\# \rho O_{s} F$. С вовышением содержания $H_{2} \rho O_{s} +$ в растворе с IO що 60 мол. $\#, j_{\mu}$ уменьшается с 5,3 · IO^{-I2} A/cm^{2} до 2,3 · IG^{-I2} A/cm^{2} пля кристаллов $ATGS \rho F$ и с 5,2 · IO^{-I2} A/cm^{2} до 1,9 · IO^{-I2} A/cm^{2} для

52

Рис. I. Зависимости j (\mathcal{E}) монокристаллов *TGSPF* -(a) и *ATGSPF* - (б), выращенных из растворов с IO-(I,2) и 60 мол.% $\mathcal{H}_{\mathcal{E}}\mathcal{P}\mathcal{O}_{\mathcal{F}}$ -- (3,4), при $t_{\rho} = 53^{\circ}$ C -- (I,3) и $t_{\rho} = 20^{\circ}$ C -- (2,4).

Рыс. 2. Зависимости j_{H} (Т) монокристаллов *TGSPF* -(a) и *ATGS* ^{OF} -(b), выращенных из растворов с IO -- (I) и 60 мол. \mathcal{H}_{2} ^{PO}₃ F -- (2), при $t_{P} = 53^{\circ}$ C.

Таблица I

Средние значения пороговых полей \mathcal{E}_{n} , полей насыщения \mathcal{E}_{n} , плотности тока насыщения j_{n} и спонтанной поляризации \mathcal{P}_{s} кристаллов *ГGSPF* (а) и *АГGSPF* (б). Температура изменений 25^оС.

tp,	Соцержание ! Н. Г. F	Е", кВ/см		Е, кВ/см		J., 10 -12 A/cm Ps, MRKAL			
°C	в растворе, мол.%	a	0	ä	d	a	d .	a	1.5
20	10	3,0	5,9	10,8	12,6	4,I	4,3	2,6	2,7
	30	5,8	7,0	11,5	13,4	3,0	3,4	2,3	2,5
	50	7,6	8,3	12,8	15,1	2,7	2,9	2,1	2,2
	60	8,5	10,4	13,2	18,2	I,4	1,7	1,3	I,8
35	10	2,8	3,3	10,4	12,I	4,6	4,5	2,8	2,8
	30	3,2	5,7	II,6	12,9	3,2	4,0	2,4	2,6
	50	6,8	7,9	12,5	14,5	2,8	3,0	2,2	2,3
	60	8,3	9,I	12,7	17,8	I,6	I,8	1,7	2,0
53	10	2,5	2,7	10,1	11,2	5,2	5,3	2,9	3,0
	30	2,8	5,I	9.II	12,0	3,5	4,7	12,5	12,8
	50	6,2	7,7	111,7	13,8	3 , I	3,6	12,3	12,5
	60	7,4	8,9	11,9	115,5	I,9	2,3	!1,8	2,1
1	r	-	1	i	i			1	İ

кристаллов *TGSPF* ($f_p = 53^{\circ}$ C) (табл. I). С понижением температуры роста j_N уменьшается для всех кристаллов независимо ст степени легирования (табл. I, рис. I).

Наблюдение петель циэлектрического гистерезиса в развитии одновременно со снятием зависимостей j (E) позволило виделить на кривых j (E) три характерных участка (рис. I). Участок I возникновения ЭЭ тока, который определяется пороговым полем, совпадает с началом переполяризации --- наблюдается ненасыщенная цетля. На участке И с ростом поля увеличивается плотность эмиссионного тока, что сопровождается увеличением петли гистерезиса. Наблюдаемое увеличение эмиссии может быть обусловлено ростом площаци, с которой эмитируются электроны. Увеличение поля приводит к росту переключаемого объема и, следовательно, площаци переключаемой части образца, как за счет роста количества доменов, так и за счет их роста в течение полупериода имкла переполяризации [1]. Участок Ш характеризуется насыщенной цетлей диэлектрического гистерезиса, что и определяет насыщение эмиссионного тока.

Сравнивая зависимости j (Е) (рис. I) с зависимостями (F (Е) [2], а также значения ρ_s , полученные по петлям гистерезиса и j_H , приведенные в табл. I, можно отметить, что

Так как r_{s} изменяет свое значение в зависимости от температуры, мы провели аналогичные эксперименты по изучению зависимостей $\int_{H}(T)$ при переполяризации кристаллов TGSPF и ATGSPF

Зависимости j_{μ} (Т) кристаллов /65 ρ F и A765 ρ F прецставлены на рис. 2. При повышении температуры j_{μ} уменьшается, стремясь к нулю в области фазового перехода, что хорошо коррелирует с зависимостями P_{s} (Т) [2]. В парафазе эмиссия электронов не наблюдается. Следует отметить, что кристаллы *Г65* ρ F и A765 ρ F, выращенные в сегнетофазе из растворов с малым содержанием $H_{2}\rho O_{3}F$, характеризуются положигельным гистерезисом j_{μ} . С ростом степени легирования гистерезис исчезает. Для кристаллов, выращенных в парафазе, гистерезис зависимости j_{μ} (Т) проявляется в меньшей степени.

В [I] показано, что электростатическое поле \mathcal{E}_{α} в пространстве поверхность кристалла — МКП определяет экзоэмиссионную активность сегнетоэлектрика, которая характеризуется плотностью эмиссионного тока с эмитирующей поверхности, то есть $j \sim f(\mathcal{E}_{\alpha})$. В работе [3] показано, что $\mathcal{E}_{\alpha} \sim f(\mathcal{P}_{c})$. Следовагельно

 $j_{\mu} = j \left(r_{s} \right). \tag{1}$

Из (I) следует, что плотность эмиссионного тока при переполяризации монокрасталлов *Г6SPF* и *АТGSPF* будет определяться величиной и поведением P_5 , которая зависит от степени велещения группи $[SQ_4]^2$ на $[PO_3 F]^2$ и от условии выращитания [2].

55

Литература

I. Розенман Г.И.// Автореф. дис.докт.физ.-мат. наук.-Свердловск. - 1989.

2. Януть В.И. // Свойства сегнетоэлектриков. Минск, пединститут. - 1989. -С. 15.

3. Охапкин В.А. // Автореф. дис.канд.физ.-мат. наук.-Свердловск. - 1989.

4. Розенман Г.И., Чепелев Ю.В., Печорский В.И. и пр. // Тез. XI Всесоюзн. конф. по физике сегнетоэлектриков.-Черновцы. - 1986. -С. 222.

УДК 537.226.33

Э.М.Кравченя

ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ И ВЕЛИЧИН ВНУТРЕННИХ СМЕЩАКЩИХ ПОЛЕЙ Е_{СМ} МЕТОДОМ НЕМАТИЧЕСКИХ ХИДКИХ КРИСТАЛЛОВ

Возможность визуализации доменной структуры на поверхнооти скола монокристаллов триглицинсульфата (TTC) нематическими жидкими кристаллами (HTKK) впервые показана в работах [I-4]. Этот метод позволяет изучать процесси переполяризации [5,6] и распределения пороговых полей, с которых начинается переполяризация сегнетоэлектрических кристаллов [7]. Кроме того, этот метод дает возможность получить экспресс-информацию о распределении и величине внутренних полей смещения $E_{\rm CM}$, необходимой для первоначальной отбраковым образцов, подготавливаемых для пироэлектрических приемников издучения.

Методика исследований не отличалась от описанной в [6,7]. На полный полярный сиол кристалла ТГС, легированного $L - \mathcal{L}$ аланином (\angle АТГС) толщиной ~ 5 мм наносили тонкий слой (5-Юмм) НЖК, показатели качества которого приведены в табл. I, и через прозрачные токопроводящие электропы (*Sn* O₂ на стекле) подавали внешнее постоянное электрическое поле Е_{вн}, направленное против имеющегося в кристалие внутреннего поля.