КОНТРОЛЬНЫЙ ЭКЗЕМПЛЯР

Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»

УТВЕРЖДАЮ Проректор по учебной работе С.И.Василец 2021 г.

Регистрационный № УД-24-1-54-20211 уч.

ТЕОРИЯ ФУНКЦИЙ ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ

Учебная программа учреждения высшего образования по учебной дисциплине (по выбору студента) для специальности 1-02 05 01 Математика и информатика

Учебная программа составлена на основе образовательного стандарта высшего образования первая ступень специальность 1-02 05 01 Математика и информатика, утвержден и введен в действие постановлением Министерства образования РБ 30.08.2013 г. № 87 и учебного плана специальности 1-02 05 01 Математика и информатика

составитель:

И.Н.Гуло, заведующий кафедрой математики и методики преподавания математики учреждения образования «Белорусский государственный педагогический университет имени Максима Танка», кандидат физикоматематических наук, доцент

РЕЦЕНЗЕНТЫ:

Белорусского теории функций доцент кафедры Т.Н.Жоровина, государственного университета, кандидат физико-математических наук, доцент;

Ю.А.Быкадоров, профессор кафедры информатики и методики преподавания информатики учреждения образования «Белорусский государственный педагогический университет имени Максима Танка», кандидат физикоматематических наук, долент

СОГЛАСОВАНО:

Директор

ГУО «Средняя школа № 61 г. Минска»

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой математики и методики преподавания математики

(протокол № 10 от 27.04.2021 г.);

Заведующий кафедрой умер И.Н.Гуло

Советом физико-математического факультета (протокол № 10 от 26.05.2021 г.)

Оформление учебной программы и сопровождающих ее материалов действующим требованиям Министерства образования Республики Беларусь соответствует

Методист учебно-методического отдела

____ С.А.Стародуб

Директор библиотеки

Н.П.Сятковская

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа дисциплины по выбору студента «Теория функций действительной переменной» физикосоставлена студентов ДЛЯ математического факультета В соответствии требованиями образовательного стандарта высшего образования специальности 1-02 05 01 Математика и информатика.

«Теория функций действительной переменной» основывается на классическом анализе и теории множеств, тесно связана с линейной алгеброй и геометрией. Этот курс играет важную роль в системе математического образования будущих учителей математики. При изучении этой учебной дисциплины студенты рассмотрят вопросы, изучение которых необходимо для их будущей профессии: сравнение бесконечных множеств, строение линейных множеств, сведениями об обобщении как методе исследования на примере теории интеграла Лебега.

Место учебной дисциплины в системе подготовки специалиста и связь с другими учебными дисциплинами

Учебная дисциплина относится к циклу специальных дисциплин компонента учреждения высшего образования.

Связь с другими учебными дисциплинами

Материал учебной дисциплины «Теория функций действительной переменной» связан с учебными дисциплинами «Математический анализ», «Дифференциальные уравнения» и «Теорией функций». Основные понятия и методы теории функций действительной переменной должны быть в настоящее время необходимым элементом образования любого школьного учителя старших классов. Научно-технический прогресс ставит перед школьным педагогом задачу не только прекрасно владеть основными понятиями школьной математики, но и понимать их место в современной знать их происхождение, развитие и использование в различных областях естествознания. Поэтому данная учебная дисциплина происхождение развитие ставит себе целью показать фундаментальных понятий математики как число, множество, функция, а также познакомить студентов с современной теорией множеств, теорией меры и интеграла, играющих огромную роль в различных областях математики.

Цель: знакомит студентов с современным состоянием математики в области измеримости множеств, функций и их интегрирования.

Задачи учебной дисциплины:

- усвоение специфического понятийного аппарата теории функций;
- совершенствование навыков самостоятельной работы с научной литературой;
 - обобщение основных понятий и структур математического анализа.

Программа составлена в соответствии с требованиями образовательного стандарта высшего образования и рассчитана на изучение дисциплины в

шестом семестра обучения, что обусловлено необходимостью получения студентами достаточных знаний по математическому анализу, алгебре и аналитической геометрии, а также приобретения ими необходимой математической культуры. Предполагается свободное владение основными понятиями математического анализа (предел, непрерывность, производная, интеграл, ряд), знание важнейших свойств непрерывных функций, и теорем курса дифференциального и интегрального исчисления.

Согласно образовательному стандарту высшего образования, изучение учебной дисциплины «Теория функций действительной переменной» должно обеспечить формирование у студентов компетенций.

Требования к академическим компетенциям

Специалист должен:

- АК-5. Быть способным порождать новые идеи (обладать креативностью).
 - АК-8. Обладать навыками устной и письменной коммуникации.
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

Требования к социально-личностным компетенциям

Специалист должен:

СЛК-3. Обладать способностью к межличностным коммуникациям.

СЛК-4. Владеть навыками здоровьесбережения.

Требования к профессиональным компетенциям

Специалист должен быть способен:

Обучающая деятельность

- ПК-1. Управлять учебно-познавательной и (учебно-исследовательской деятельностью обучающихся.
 - ПК-2. Использовать оптимальные методы, формы и средства обучения.
- ПК-3. Организовывать и проводить учебные занятия различных видов и форм.
 - ПК-4. Организовывать самостоятельную работу обучающихся.

Развивающая деятельность

- ПК-11. Развивать учебные возможности и способности обучающихся на основе системной педагогической диагностики.
- ПК-12. Развивать навыки самостоятельной работы обучающихся с учебной, справочной, научной литературой и др. источниками информации.
- ПК-13. Организовывать и проводить коррекционно-педагогическую деятельность с обучающимися.
 - ПК-14. Предупреждать и преодолевать неуспеваемость обучающихся.

Ценностно-ориентационная деятельность

- ПК-15. Формулировать образовательные и воспитательные цели.
- ПК-16. Оценивать учебные достижения обучающихся, а также уровни их воспитанности и развития.

- ПК-17. Осуществлять профессиональное самообразование и самовоспитание с целью совершенствования профессиональной деятельности.
- ПК-18. Организовывать целостный педагогический процесс с учетом современных образовательных технологий и педагогических инноваций.
- ПК-19. Анализировать и оценивать педагогические явления и события прошлого в свете современного научного знания.

Требования к уровню освоения содержания учебной дисциплины

В результате изучения учебной дисциплины студент должен овладеть следующими знаниями и умениями.

Студент должен знать:

- основные понятия и теоремы теории функций действительной переменной;
 - понятия меры Лебега, измеримого множества и измеримой функции;
 - определение и свойства интеграла Лебега;

Студент должен уметь:

- сравнивать бесконечные множества;
- вычислять интеграл Лебега от измеримых и суммируемых функций.

В результате изучения дисциплины по выбору студент должен владеть практическими умениями применять полученные математические знания в нестандартных ситуациях науки и жизни.

Методы обучения рекомендованы к использованию в процессе преподавания дисциплины: сообщение преподавателя (слово преподавателя), беседа, анализ, построение алгоритмов, моделирование, математический эксперимент, самостоятельная работа.

Информационно-методическая часть учебной программы включает список основной и дополнительной литературы, методические рекомендации по организации самостоятельной работы студентов, перечень используемых средств диагностики результатов учебной деятельности.

Дисциплина по выбору студента «Теория функций действительной переменной» изучается при дневной форме получения образования в 6 семестре. Согласно учебным планам на изучение учебной дисциплины всего отводится 82 часа, из них аудиторных 52 часа (лекций — 28 часов, практических занятий — 24 часа), на самостоятельную работу студентов отведено 30 часов.

Текущая аттестация — зачёт — предполагает ответы на теоретические вопросы и выполнение практического задания.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Мощность множества

Первоначальные сведения о множествах. Соответствия между множествами. Понятие мощности множества. Счетные множества и их свойства. Счётность множеств целых, рациональных и алгебраических чисел. Множества мощности континуума. Теорема Кантора — Бернштейна. Сравнение мощностей. Проблема континуума. Существование множеств больших мощностей.

Тема 2. Мера Лебега. Измеримые функции

Линейные множества. Строение линейных открытых и замкнутых множеств. Совершенные множества. Канторово множество. Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества и их свойства. Измеримые множества. Измеримые функции и их свойства.

Тема 3. Интеграл Лебега. Пространства L_1, L_2

Определение интеграла Лебега от ограниченной функции. Верхняя и нижняя суммы Лебега и их основные свойства. Существование и основные свойства интеграла Лебега. Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега. Интеграл от неотрицательной измеримой функции. Суммируемые функции. Пространства L_1 , L_2 . Вычисление интеграла Лебега от неограниченных функций.

Тема 4. Ряды Фурье

Ортогональные функции. Ортогональная система функций. Замкнутость и полнота системы тригонометрических функций. Ряд Фурье. Разложение кусочно-гладкой функции в ряд Фурье.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА (дневная форма получения образования)

Ы,			Количество аудиторных часов		абота	ое : занятия методические э.)		аний
Номер раздела, темы, занятия	Название раздела, темы, занятия; перечень изучаемых вопросов	Лекции	Практические занятия	Лабораторные занятия	Самостоятельная работа студентов	Материальное обеспечение занятия (наглядные, методич пособия и др.)	Литература	Формы контроля знаний
1	2	3	4	5	6	7	8	9
			6 сем	естр				
1.	Мощность множества	6	6		8			
1.1.	Первоначальные сведения о							
	множествах. Соответствия между множествами. Понятие мощности множества. Счетные множества и их свойства. Счётность множеств целых, рациональных и алгебраических чисел.	2			2	Тесты	[2-8, 12]	Устный опрос
1.2.	Соответствия между множествами. Понятие мощности множества. Счетные множества и их свойства.		2				[1, 9]	
1.3	Множества мощности континуума. Теорема Кантора – Бернштейна. Сравнение мощностей. Проблема	2			2	Тесты	[2-8, 12]	Устный опрос

	континуума. Существование множеств						
1.4	больших мощностей.				17		Carra ama ama ma va a
1.4	Множества мощности континуума. Сравнение мощностей.		2		Индивидуальные задания	[1, 9]	Самастоятельная работа
1.5	Множества на числовой прямой.						
	Замкнутые и открытые множества, их	2		4		[1-10, 12]	
	строение. Совершенные множества.			-		[,]	
	Совершенное множество Кантора.						
2.	Мера Лебега. Измеримые функции	6	6	6			
2.1	Линейные множества. Строение						
	линейных открытых и замкнутых	2		2	Тесты	[1-10, 12]	Устный опрос
	множеств. Совершенные множества.				ТСТЫ	[1 10, 12]	з стивит опрос
	Канторово множество.						
2.2	Линейные множества. Строение				**		
	линейных открытых и замкнутых		2		Индивидуальные	[1, 9]	
	множеств. Совершенные множества.				задания	Ε / Ι	
2.2	Канторово множество.						
2.3	Мера ограниченного открытого						
	множества. Мера ограниченного замкнутого множества. Внешняя и						
		2		2	Тесты	[2-8, 12]	Устный опрос
	внутренняя меры ограниченного множества и их свойства. Измеримые						
	множества и их своиства. Измеримые множества.						
2.4	Мера ограниченного открытого						
	множества. Мера ограниченного		•		Индивидуальные	54 07	
	замкнутого множества. Внешняя и		2	2	задания	[1, 9]	
	внутренняя меры ограниченного				· ·		

	множества и их свойства. Измеримые множества.						
2.5	Измеримые функции и их свойства. Измеримость почти всюду непрерывных функций.	2					
2.6	Измеримые функции и их свойства. Эквивалентность измеримых функций. Измеримость суммы, произведения, частного двух измеримых функций.		2			[1, 9]	Самастоятельная работа
3	Интеграл Лебега. Пространства L_1, L_2	8	6	10			
3.1	Определение интеграла Лебега от ограниченной функции. Верхняя и нижняя суммы Лебега и их основные свойства.	2		4		[2-8, 12]	Устный опрос
3.2	Верхняя и нижняя суммы Лебега и их основные свойства.		2		Индивидуальные задания	[1, 9]	
3.3	Существование и основные свойства интеграла Лебега. Предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.			2		[2-8, 12]	
3.4	Методы вычисления интеграла Лебега. Сравнение интегралов Римана и Лебега.		2			[1, 9]	Самастоятельная работа
3.5	Интеграл от неотрицательной измеримой функции. Суммируемые функции. Пространства L_1 , L_2 . Вычисление интеграла Лебега от неограниченных функций.			2		[2-8, 12]	Устный опрос
3.6	Суммируемые функции. Пространства		2	2		[1, 9]	

	L_1, L_2 . Вычисление интеграла Лебега от неограниченных функций.						
4	Ряды Фурье	8	6	6			
4.1	Ортогональные функции. Ортогональная система функций. Замкнутость и полнота системы тригонометрических функций.	4		2	Тесты	[2-8, 12]	Устный опрос
4.2	Ортогональные функции. Ортогональная система функций. Замкнутость и полнота системы тригонометрических функций.		2	4	Индивидуальные задания	[1, 9]	Самастоятельная работа
4.3	Ряд Фурье. Разложение кусочно-гладкой функции в ряд Фурье.	4			Тесты	[2-8, 12]	Устный опрос
4.4	Ряд Фурье. Разложение кусочно-гладкой функции в ряд Фурье.		4		Индивидуальные задания		
	Всего	28	24	30			зачёт

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

Основная литература

- 1. Кротов, В. Г. Математический анализ : учеб. пособие / В. Г. Кротов. Минск : Белорус. гос. ун-т, 2017. 376 с.
- 2. Теория функций действительной переменной [Электронный ресурс] : учеб.-метод. комплекс / сост. И. Н. Гуло // Репозиторий БГПУ. Режим доступа: http://elib.bspu.by/handle/doc/44474. Дата доступа: 12.05.2021.

Дополнительная литература

- 1. Ильин, В. А. Основы математического анализа : учеб. для студентов : в 2 ч. / В. А. Ильин, Э. Г. Поздняк. М. : Наука, 2002. Ч. 2. 464 с.
- 2. Колмогоров, А. Н. Элементы теории функций и функционального анализа / А. Н. Колмогоров, С. В. Фомин. М.: ФИЗМАТЛИТ, 2012. 576 с.
- 3. Майсеня, Л. І. Курс вышэйшай матэматыкі. Тэорыя функцый камплекснай зменнай. Аперацыйнае злічэнне : падруч. для студэнтаў / Л. І. Майсеня. Мінск : Інтэрпрэссэрвіс, 2003. 480 с.
- 4. Макаров, М. П. Дополнительные главы математического анализа / М. П. Макаров. М. : Наука, 1968. 312 с.
- 5. Маркушевич, А. И. Введение в теорию аналитических функций / А. И. Маркушевич, Л. А. Маркушевич. М.: Просвещение, 1977. 320 с.
- 6. Натансон, И. П. Теория функций вещественной переменной / И. П. Натансон. М. : Наука, 1974. 476 с.
- 7. Очан, Ю. С. Сборник задач и теорем по теории функций действительного переменного / Ю. С. Очан. М. : Просвещение, 1983. 228 с.
- 8. Привалов, И. И. Введение в теорию функций комплексного переменного / И. И. Привалов. М. : Наука, 1984. 432 с.
- 9. Сидоров, Ю. В. Лекции по теории функций комплексного переменного / Ю. В. Сидоров, М. В. Федорюк, М. И. Шабунин. М. : Наука, $1980.-480~\rm c.$
- 10. Стельмашук, Н. Т. Элементы теории аналитических функций: учеб. пособие для студентов физ.-мат. фак. пед. вузов / Н. Т. Стельмашук, В. А. Шилинец. Минск: ДизайнПРО, 1997. 191 с.
- 11. Шабат, Б. В. Введение в комплексный анализ : учеб. для вузов : в 2 ч. / Б. В. Шабат. 4-е изд., стер. М. : Лань, 2004. Ч. 1 : Функции одного переменного. 336 с.
- 12. Шахно, К. У. Элементы теории функций комплексной переменной и операционного исчисления / К. У. Шахно. Минск : Выш. шк., 1975. 400 с.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕТОВ

В процессе изучения дисциплины по выбору студента «Теория функций действительной переменной» большое внимание уделяется организации самостоятельной работы студентов, как при изучении теоретических вопросов, так и при выполнении практических заданий.

Самостоятельная работа студентов реализуется как в процессе аудиторных занятий (на лекциях, практических занятиях), так и на консультациях, при выполнении индивидуальных заданий и т.д.

Формы самостоятельной работы студентов:

- выполнение индивидуальных заданий, направленных на развитие у студентов самостоятельности и методической компетенции;
 - выполнение обучающих и контрольных тестов;

Основными задачами самостоятельной работы студентов являются:

- углубление знаний и умений студентов, полученных в ходе плановых учебных занятий;
 - формирование когнитивных компетенций;
- подготовка студентов к занятиям, к промежуточному и итоговому контролю;
- формирование навыков самостоятельной научно-исследовательской деятельности.

Самостоятельная работа студентов проводится в предусмотренном учебным планом объеме.

ТРЕБОВАНИЯ К ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА

№		Кол-во	1	Фотко
	Название темы раздела		Задание	Форма
п/п		часов на		выполнения
		CPC		
	Мощность множества	8		
1.	Первоначальные сведения о	2	[6, c. 9–33]	Доказать
	множествах. Соответствия		[2, c. 21–31]	сформулированн
	между множествами.			ые на лекции
	Понятие мощности			теоремы
	множества. Счетные			
	множества и их свойства.			
	Счётность множеств целых,			
	рациональных и			
	алгебраических чисел.			
2.	Множества мощности	2	[7, c. 9–17	Письменный
	континуума. Теорема		№27–61]	отчет с
	Кантора – Бернштейна.			решением (не
	Сравнение мощностей.			менее 5 задач)
	Проблема континуума.			
	Существование множеств			
	больших мощностей.			

2	M	1	[6 - 04 55]	П
3.	Множества на числовой	4	[6, c. 34–55]	Доказать
	прямой. Замкнутые и		[2, c. 56–65]	сформулированн
	открытые множества, их			ые на лекции
	строение. Совершенные			теоремы
	множества. Совершенное			
	множество Кантора.			
	Мера Лебега. Измеримые	6		
	функции			
4.	Линейные множества.	2	[6, c. 56–85]	Доказать
	Строение линейных		[2, c. 251–261]	сформулированн
	открытых и замкнутых			ые на лекции
	множеств. Совершенные			теоремы
	множества. Канторово			
	множество.			
5.	Мера ограниченного	2	[7, c. 37–43	Письменный
	открытого множества. Мера		№235–245]	отчет с
	ограниченного замкнутого			решением (не
	множества. Внешняя и			менее 5 задач)
	внутренняя меры			
	ограниченного множества и			
	их свойства. Измеримые			
	множества.			
6.	Мера ограниченного	2	[7, c. 37–43	Письменный
	открытого множества. Мера		<i>№</i> 294–296,	отчет с
	ограниченного замкнутого		c.47–48	решением (не
	множества. Внешняя и		№320–326]	менее 5 задач)
	внутренняя меры			
	ограниченного множества и			
	их свойства. Измеримые			
	множества.			
	Интеграл Лебега.	10		
	Пространства L_1, L_2			
7.	Определение интеграла	4	[6, c. 109–125]	Доказать
	Лебега от ограниченной		[2, c. 291–310]	сформулированн
	функции. Верхняя и нижняя			ые на лекции
	суммы Лебега и их			свойства
	основные свойства.			
8.	Существование и основные	2	[7, c. 85–87	Письменный
	свойства интеграла Лебега.		№565–575]	отчет с
	Предельный переход под			решением (не
	знаком интеграла.			менее 5 задач)
	Сравнение интегралов			
	Римана и Лебега.			
9.	Интеграл от	2	[6, c.129–142,	Доказать
	неотрицательной	_	c.154–179]	сформулированн
	измеримой функции.		[2, c.375–388]	ые на лекции
	Суммируемые функции.		[, 1.2.2.2.3]	теоремы
	Пространства L_1 , L_2 .			1
	11 00 1 pario 1 Da 11, 112.			

10.	Вычисление интеграла Лебега от неограниченных функций. Суммируемые функции. Пространства L_1 , L_2 . Вычисление интеграла Лебега от неограниченных функций.	2	[7, c. 88–89 №581–586]	Письменный отчет с решением (не менее 5 задач)
	Ряды Фурье	6		
11.	Ортогональные функции. Ортогональная система функций. Замкнутость и полнота системы тригонометрических функций.	2	[6, c.257–261, c.289–299] [2, c.389–390, c.406–412]	Доказать сформулированн ые на лекции теоремы
12.	Ортогональные функции. Ортогональная система функций. Замкнутость и полнота системы тригонометрических функций.	4	[6, c.266–279, c.311–334, c. 370–377]	Привести примеры ортогональных систем функций и доказать их ортогональность (не менее 3)

ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ РЕЗУЛЬТАТОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ

При изучении дисциплины «Теория функций действительной переменной» планируется проведение устного опроса и проверочных работ в рамках учебных часов, отведенных на аудиторные занятия по дисциплине. Промежуточный контроль знаний осуществляется посредством тестовых заданий, проверочных работ.

Для оценки достижений и уровня знаний студента при изучении дисциплины целесообразно применить инструментарий, который включает

- самостоятельное решение задачи у доски;
- блиц-опрос при обсуждении плана решения задачи и отдельных пунктов плана;
- контроль ведения рабочих тетрадей.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ по учебной дисциплине «Теория функций действительной переменной»

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы по изучаемой учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
1	2	3	4
Математический анализ	Кафедра математики и методики преподавния математики	С содержанием данной учебной дисциплины согласуются, замечаний и предложений нет	Протокол №10 от 27.04.2020
Алгебра	Кафедра математики и методики преподавния математики	С содержанием данной учебной дисциплины согласуются, замечаний и предложений нет	Протокол №10 от 27.04.2020
Дифференциальные уравнения	Кафедра математики и методики преподавния математики	С содержанием данной учебной дисциплины согласуются, замечаний и предложений нет	Протокол №10 от 27.04.2020
Теория функций	Кафедра математики и методики преподавния математики	С содержанием данной учебной дисциплины согласуются, замечаний и предложений нет	Протокол №10 от 27.04.2020