© ИПНК НАН Беларуси, ИТМО

ИСПОЛЬЗОВАНИЕ АТОМНО-СИЛОВОЙ МИКРОСКОПИИ ДЛЯ ОЦЕНКИ ВЛИЯНИЯ НАНОЧАСТИЦ И ТЕМПЕРАТУРЫ НА ЛОКАЛЬНЫЕ МЕХАНИЧЕСКИЕ СВОЙСТВА КЛЕТОК КРОВИ ПАЦИЕНТОВ С САХАРНЫМ ДИАБЕТОМ 2 ТИПА

А.С. ПЕТРОВСКАЯ

НАУЧНЫЙ РУКОВОДИТЕЛЬ – Г.Б. МЕЛЬНИКОВА, КАНДИДАТ ТЕХНИЧЕСКИХ НАУК

Методом атомно-силовой микроскопии было проведено изучение влияния температуры и буферных растворов наночастиц на структуру и свойства клеточной мембраны эритроцитов и тромбоцитов условно здоровых и пациентов с сахарным диабетом 2 типа. Установлена критическая температура воздействия на клеточную мембрану эритроцитов и выявлено различное влияние наночастиц на изменения локальных механических свойств клеток крови. Оценены изменения параметров агрегации эритроцитов после комплексного воздействия различных температур и наночастиц

Ключевые слова: атомно-силовая микроскопия, клетки крови, наночастицы, полиакриловая кислота, оксид кремния

1. Введение

Нарушение свойств мембран клеток обусловлено различными патологическими состояниями, однако выявить их обычными широко используемыми методами иногда не удается. Одним из перспективных является атомно-силовая микроскопия (ACM) в комплексе со стандартными методами. В настоящее время ACM используют для оценки степени воздействия различных факторов на структуру и упругие свойства мембраны клеток крови.

2. Материалы и методы

Эритроциты и тромбоциты выделяли из стабилизированной венозной крови пациентов с сахарным диабетом 2 типа и условно здоровых, фиксировали 0.5% раствором глутарового альдегида и высушивали на подложках слюды. Клетки дополнительно инкубировали с буферными растворами наночастиц полиакриловой кислоты (ПАК) и оксида кремния SiO_2 (Sigma-Aldrich, d=10–20 нм). Исследование структуры и упругих свойств поверхности мембран клеток осуществляли методом атомно-силовой микроскопии на приборе NT-206 (производства ОДО «Микротестмашины», Беларусь) с использованием стандартных кремниевых зондов NSC11A (жесткость 3 H/м) при нагрузке кантилевера на поверхность образца 80 нH.

3. Результаты и выводы

В результате проведенного исследования влияния температуры на свойства мембран клетки методом АСМ были зафиксированы изменения формы эритроцитов пациентов с СД2 при температуре 47 °C в течение 60 мин, а также наблюдалось уменьшения модуля упругости на 25 % и силы адгезии на 30 %. Для тромбоцитов изменения структуры и локальных механических свойств после воздействия температуры достоверно не отличаются от контроля. После инкубирования клеток с наночастицами ПАК модуль упругости их мембран уменьшается., с наночастицами оксида кремния (С = 1 мг/мл) приводит к изменению параметров скорости начального процесса и основного периода агрегации красных клеток крови. Для клеток условно здоровых пациентов характерно увеличение модуля упругости. Таким образом, звездообразные наночастицы ПАК (Мn = 57 000 Да) и диоксида кремния при дополнительном воздействии температурного фактора (до 43 °C) могут быть использованы в качестве носителей лекарственных средств. Полученная информация о свойствах клеточной мембраны является фундаментальной и может быть использована при разработке методик оценки патологий на ранних стадиях развития методом атомно-силовой микроскопии и подбору лекарственных препаратов.

©ГГУ

РАЗРАБОТКА СИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ С ИСПОЛЬЗОВАНИЕМ ИК-ИЗЛУЧЕНИЙ

А.А. ПЕТУШКОВ

НАУЧНЫЙ РУКОВОДИТЕЛЬ – М.И. ЖАДАН, КАНДИДАТ ФИЗИКО-МАТЕМАТИЧЕСКИХ НАУК, ДОЦЕНТ

Статья посвящена созданию компьютерной системы передачи и обработки информации с использованием ІКизлучений. Реализованная система способна полностью имитировать реальные поведенческие факторы ведения стрельбы из огневого оружия, такие как скорострельность, точность, шанс осечки и т.д., а также предоставляющая возможность идентифицировать попадания по «противнику» с последующей обработкой этого попадания и передачей информации для дальнейшей обработки на сервере. Имеется возможность конфигурирования и опроса значений параметров при помощи консольных команд. Компьютерная система может быть адаптирована для любых уст-