Structure and properties of poly(9-vinylcarbazole) thin compositional nanofilms

G.B. Melnikova^{1,2}, D.V. Sapsaliou², V.A. Lapitskaya¹, T.N. Tolstaya¹, T.A. Kuznetsova¹, S.A. Chizhik¹, A.V. Luikov¹
¹Heat and Mass Transfer Institute of NAS of Belarus, Minsk, Belarus, e-mail: *galachkax@gmail.com*²Belarusian State Pedagogical University named after Maxim Tank, Minsk, Belarus

The morphology of thin compositional films and careful control of the ratio of the composite components play a crucial role in regulation the processes of charge transfer and optimizing theirs optoelectronic properties.

Compositional poly(9-vinylcarbazole) (PVC, $M_w \sim 1\ 100\ 000$) films with silicon dioxide nanoparticles were obtained from a mixture of PVC and a powder of nanoparticles (NP) SiO₂ (d=10–20 nm) as NP suspension in chloroform with different volume ratio (1 mol PVK : $0.67\cdot10^4$ and $167\cdot10^4$ mol SiO₂ respectively.

It was found, that the optimal concentration is of 0.5 mg/ml and surface pressure for forming PVC-films by Langmuir – Blodgett method is varied from 4 to 12 mN/m (Fig. a, b). After incorporation of NPs in a chlorophorm suspension and as powder surface pressure of phase state of the solid film is shift to the value pf 30 mN/m, while the NPs are embedded in the structure of the PVC film. In the case of SiO₂ powder NPs directionally structured layer (Fig. c, d).

Fig. AFM-structure of PVC films on silicon substrate: a) PVC, $\pi = 4.7$ mN/m; b) PVC, $\pi = 8.3$ mN/m; c) PVC + SiO₂, $\pi = 30$ mN/m; d) PVC + NPSiO₂, $\pi = 33$ mN/m

Contact angle doesn't depend on structure and composition of film and its value is only 59^{0} on silicon substrate. On the glass substrate structure of films is denser and CA increases to the value of 70^{0} and in the case of composition films PVC+NP SiO₂ is up to 92^{0} . For films formed by spincoating method the surfaces are characterized by conglomerates with sizes from 200 to 400 nm and CA is of $70-85^{0}$ on the two types of substrates. These films don't reduce the light transmission of glass and increase scattering in some cases.