Structure and properties of poly(9-vinylcarbazole) thin compositional nanofilms

G.B. Melnikova ${ }^{1,2}$, D.V. Sapsaliou ${ }^{2}$, V.A. Lapitskaya ${ }^{1}$, T.N. Tolstaya ${ }^{1}$, T.A. Kuznetsova ${ }^{1}$, S.A. Chizhik ${ }^{1}$, A.V. Luikov ${ }^{1}$
${ }^{1}$ Heat and Mass Transfer Institute of NAS of Belarus, Minsk, Belarus, e-mail: galachkax@gmail.com
${ }^{2}$ Belarusian State Pedagogical University named after Maxim Tank, Minsk, Belarus

The morphology of thin compositional films and careful control of the ratio of the composite components play a crucial role in regulation the processes of charge transfer and optimizing theirs optoelectronic properties.

Compositional poly(9-vinylcarbazole) (PVC, $\mathrm{M}_{\mathrm{w}} \sim 1100000$) films with silicon dioxide nanoparticles were obtained from a mixture of PVC and a powder of nanoparticles (NP) $\mathrm{SiO}_{2}(\mathrm{~d}=10-20 \mathrm{~nm})$ as NP suspension in chloroform with different volume ratio (1 mol PVK : $0.67 \cdot 10^{4}$ and $167 \cdot 10^{4}$ mol SiO 2 respectively.

It was found, that the optimal concentration is of $0.5 \mathrm{mg} / \mathrm{ml}$ and surface pressure for forming PVC-films by Langmuir - Blodgett method is varied from 4 to $12 \mathrm{mN} / \mathrm{m}$ (Fig. a, b). After incorporation of NPs in a chlorophorm suspension and as powder surface pressure of phase state of the solid film is shift to the value pf $30 \mathrm{mN} / \mathrm{m}$, while the NPs are embedded in the structure of the PVC film. In the case of SiO_{2} powder NPs directionally structured layer (Fig. c, d).

Fig. AFM-structure of PVC films on silicon substrate:
a) $\mathrm{PVC}, \pi=4,7 \mathrm{mN} / \mathrm{m}$;
b) $\mathrm{PVC}, \pi=8,3 \mathrm{mN} / \mathrm{m}$; c) $\mathrm{PVC}+\mathrm{SiO}_{2}, \pi=30 \mathrm{mN} / \mathrm{m}$;
d) $\mathrm{PVC}+\mathrm{NPSiO}_{2}, \pi=33 \mathrm{mN} / \mathrm{m}$

Contact angle doesn't depend on structure and composition of film and its value is only 59° on silicon substrate. On the glass substrate structure of films is denser and CA increases to the value of 70° and in the case of composition films PVC+NP SiO_{2} is up to 92°. For films formed by spincoating method the surfaces are characterized by conglomerates with sizes from 200 to 400 nm and CA is of $70-85^{\circ}$ on the two types of substrates. These films don't reduce the light transmission of glass and increase scattering in some cases.

