

### Галина Грушевская,

ведущий научный сотрудник кафедры компьтерного моделирования физического факультета БГУ, кандидат физикоматематических наук Бабенко, доцент кафедры биоорганической химии медицинского факультета иностранных учащихся

БГМУ, кандидат

химических наук

Андрей

## Нина Крылова,

старший научный сотрудник кафедры компьтерного моделирования физического факультета БГУ, кандидат физикоматематических наук

### Игорь Липневич,

научный сотрудник

кафедры

компьтерного

физического

факультета БГУ

моделирования

Валентина Егорова,

доцент кафедры химии факультета естествознания БГПУ им. М. Танка, кандидат биологических наук

# Одномолекулярное EIS-секвенирование ДНК на композитах нанопористых структур

Аннотация. В статье анализируются перспективы использования прямой ДНК-нанодиагностики в медицине, сравниваются различные способы ДНК-секвенирования и предлагается высокочувствительный метод секвенирования индивидуальных молекул ДНК на электрохимических импедансных (EIS) ДНК-наносенсорах.

Ключевые слова: прямая ДНК-диагностика, однонуклеотидный полиморфизм, электрохимический ДНК-наносенсор.

етоды определения первичной последовательности нуклеиновых кислот (секвенирования)

активно развиваются в нескольких направлениях. Технологии секвенирования геномов прои эукариот *de novo*, а также метагеномные исследования используются не только в научном мире, но и в рутинной клинической диагностике. Заметно растет спрос и на секвенирование небольших геномов или их участков, включая полиморфизм генов и определение мутационных профилей.

Практически все указанные приложения метода требуют обогащения первичной мишени, например конкретных целевых областей молекулы ДНК с помощью полимеразной цепной реакции (ПЦР), что вносит дополнительные переменные в и без того непростое уравнение молекулярной диагностики патологий инфекционной и неинфекционной природы. В связи с этим за последние 10 лет значительно развились методы секвенирования на наносенсорах [1–4].

# Прямая ПЦР-основанная ДНК-диагностика в медицине

В клинико-диагностических лабораториях с помощью методов, использующих ПЦР (классическая, в режиме реального времени, цифровая), выявляют инфекционные и наследственные болезни, генетические факторы риска сердечно-сосудистых и онкологических заболеваний, осуществляют неинвазивный пренатальный скрининг аномалий развития плода и др. Особую важность в некоторых случаях имеют профили мутаций или полиморфных состояний определенных участков генома человека, которые включают ключевые точки, связанные с теми или иными фенотипическими (на уровне белков или регуляторных некодирующих форм РНК) проявлениями патологического

или иного характера в организме человека [5].

Несмотря на развитие технологий и широкое распространение ПЦР, использующие ее приложения все еще остаются достаточно трудоемкими и затратными с точки зрения рутинных клинических анализов. В настоящее время изза дороговизны основными потребителями услуг генетических исследований являются исследовательские лаборатории и диагностические центры системы страховой медицины [6].

Генетический анализ полиморфизма и мутаций в отличие от определения последовательностей вирусных и бактериальных нуклеиновых кислот часто оказывается более сложным и дорогостоящим. Во многом это связано с необходимостью работы всего с одним или несколькими нуклеотидами. Характерный пример таких приложений - определение мутаций в образцах опухолевой ткани, в частности в гене, кодирующем один из ключевых белков, участвующих в передаче сигнала внутрь клетки - KRAS.

Более 90% всех особенностей в первичной последовательности

| Прос            | филь                                        | Гены                | Определяемые<br>мутации |
|-----------------|---------------------------------------------|---------------------|-------------------------|
|                 | KRAS 7 мутаций KRAS (Кодоны 1<br>12 мутаций |                     | Gly12Asp(GGT>GAT)       |
|                 |                                             |                     | Gly12Ala(GGT>GCT)       |
|                 |                                             |                     | Gly12Val(GGT>GTT)       |
| KRAS 12 мутаций |                                             | KRAS (Кодоны 12,13) | Gly12Ser(GGT>AGT)       |
|                 |                                             |                     | Gly12Arg(GGT>CGT)       |
|                 |                                             |                     | Gly12Cys(GGT>TGT)       |
|                 |                                             |                     | Gly13Asp(GGC>GAC)       |
|                 | KRAS (Кодон 13)                             |                     | Gly13Ser(GGC>AGC)       |
|                 |                                             |                     | Gly13Arg(GGC>CGC)       |
|                 |                                             |                     | Gly13Val(GGC>GTC)       |
|                 |                                             |                     | Gly13Cys(GGC>TGC)       |
|                 |                                             |                     | Gly13Ala(GGC>GCC)       |

Таблица 1. Соматические SNP-мутации гена KRAS (кодоны 12, 13)

ДНК гена KRAS представляют собой точечные замены одного нуклеотида на другой во втором экзоне гена, в последовательностях, кодирующих 12-ю и 13-ю аминокислоты (табл. 1). В норме в обеих позициях располагается глицин – единственная аминокислота, не имеющая боковой цепи. Любое изменение этой последовательности приводит к его замене на аминокислоты с разветвленным углеводородным радикалом, что ведет к нарушению пространственной конфигурации белка, в результате чего блокируется способность специальных белков инактивировать KRAS, соединенный с молекулой гуанозинтрифосфата (ГТФ), путем гидролиза ГТФ. Так как ГТФ служит источником энергии для химической реакции, катализируемой ферментом KRAS, то гидролиз ГТФ прерывает цепочку, обеспечивая при этом нормальное функционирование клетки [7, 8].

Согласно табл. 1, молекулярно-генетический анализ однонуклеотидного полиморфизма (SNP) только в кодонах 12 и 13 требует постановки более 10 ПЦР в режиме реального времени, для которых нужны дорогостоящие наборы реагентов (Therascreen KRAS RGQ PCR Kit, Qiagen, CIIIA). 4aстично эту проблему можно решить с помощью секвенирования по Сенгеру, конечная стоимость которого значительно ниже, однако этот метод не обладает достаточной чувствительностью для определения менее 20-30% мутантной ДНК в образце, что нередко наблюдается в гетерогенных опухолях.

На данный момент для рутинных клинических исследований не предложено метода анализа последовательностей ДНК, обладающего всеми преимуществами секвенирования и ПЦР, одновременно недорогого и простого в исполнении, надежного и воспроизводимого.

# Современные методы секвенирования

При определенных условиях секвенирование может обходиться без обогащения исследуемой последовательности с помощью ПЦР или иных подходов. Благодаря этому снижается вероятность перекрестной контаминации образцов и получения ложноположительных результатов. Тем не менее в большинстве случаев количество целевых участков ДНК на старте не может обеспечить достаточное число ампликонов для корректной детекции, так как TaqMan-полимераза ингибируется через 40 циклов [9]. Из-за существования верхнего ограничения ПЦР-продукта по массе, например, мультиплексный молекулярно-генетический анализ на вирулентность проводится при концентрации ДНК более 2·10<sup>3</sup> МЕ/мл (8·10<sup>3</sup> геномных копий/мл) в исходном образце с вирусной ДНК (ПЦР с набором реагентов «Рибо-сорб» и «Рибо-преп») [10].

Решение обогатить целевые участки ДНК с помощью ПЦР или альтернативных подходов зачастую сопровождается незаметной на первый взгляд проблемой – потерей чувствительности к минорным последовательностям. Это связано в первую очередь с необходимостью проведения мультиплексной ПЦР вне зависимости от наличия специфических олигонуклеотидов или случайных последовательностей. Наконец, сборка коротких прочтений (ридов) в готовую последовательность



*Рис. 1.* Динамика объема спроса на услуги NGS-секвенирования в 2012—2022 г., млрд долл.

также приводит к ошибкам распознавания. При этом для таких направлений, как диагностика хронических и вялотекущих вирусных инфекций, мониторинг состояния пациентов с использованием жидкой биопсии, определение молекулярного профиля опухолей, роль минорных последовательностей чрезвычайно важна.

Современные методы генотипирования называют секвенированием следующих поколений – NGS (Next Generation Sequensing) и TGS (Third Generation Sequensing). TGS не использует ПЦР-обогащение [11]. NGSи TGS-методы - это ДНК-наносенсорные технологии секвенирования, когда одновременно применяются несколько собранных вместе ДНК-сенсоров или ячеек, специализированных на различные целевые ДНК-последовательности и называемых ДНК-микрочипом [11, 12]. На каждом микрочипе может располагаться от 30-50 до нескольких десятков и даже сотен тысяч упорядоченно нанесенных микротестов или проб [13]. NGS- и оптическое

TGS-секвенирование – короткоридовые. Преимущество последнего с электрохимическим трансдьюсером – возможность длинноридового секвенирования целых нативных молекул ДНК [14].

Эффективность высокопроизводительных систем NGS и TGS поколений приведет к экспоненциальному росту спроса на услуги молекулярно-генетического анализа (рис. 1) [15]. Особенно они будут востребованы в онкологии из-за важной роли минорных последовательностей ДНК. При этом, согласно данным многочисленных обзоров клинических исследований, классическое секвенирование по Сенгеру, равно как и приложения NGS, позволяют достоверно выявлять 10-20% ДНК в общем пуле [16, 17]. С другой стороны, мультиплексные ПЦР в режиме реального времени и цифровая ПЦР гарантируют 5% [18], однако производительность этих методов недостаточна. На ранних стадиях развития опухоли с содержанием 0,01-1% числа копий мутантного гена результаты детектирования практически непредсказуемы [19].

# Длинноридовое EIS-детектирование SNP на квантовых материалах и нанокомпозитах

Электрохимические или электронные методы, в отличие от оптических, не требуют обязательного использования меченых ДНК и основываются на регистрации изменения электрофизических свойств (проводимости и диэлектрической проницаемости) ДНК-образца. Полупроводниковый ионный NGS-секвенатор функционирует на ионно-селективных полевых транзисторах. При проведении синтеза вблизи поверхности их затворов положительно заряженные ионы водорода, образуемые при гидролизе нуклеотидов с последующим включением нуклеозидмонофосфатов в растущую ДНК-цепочку, вызывают перераспределение электрического заряда. Соответственно меняется электрическое поле, действующее на электрический ток между стоком и истоком транзистора.

Перспективная альтернатива стандартным методам – развитие



Puc. 2. Нанопоровое секвенирование ssДHK с регистацией туннельного тока через 0,7-нанометровый разрыв электрода (электрод показан желтым цветом)

электрохимических методов длинноридового секвенирования ДНК на нанопористых поверхностях и квантовых материалах ввиду высокой чувствительности, низкой стоимости и возможности миниатюризации электрохимических ДНК-сенсоров. Электрохимическая импедансная спектроскопия с использованием современных EIS ДНК-сенсоров с электродами Si/SiO<sub>2</sub> wafer/SWCNT/AuNP, в покрытие которых включены одностенные углеродные нанотрубки (SWCNT, одностенные УНТ) и золотые наночастицы (AuNP), имеет



*Рис. 3.* Система электрохимического импедансного ДНК-анализа (в центре) с регистрацией частотных зависимостей изменения электрической емкости *ΔС* ДНК-сенсора (справа и внизу) после гибридизации денатурированной dsДHK (слева)

предельную чувствительность 10 зептоМ (зМ, 10<sup>-21</sup> М) (для олигонуклеотидов из 10 азотистых оснований) [20]. Модификация электродов графеном позволяет детектировать немеченые генные последовательности без ПЦР при предельной чувствительности 7,1 зМ [21]. EIS ДНК-сенсор с электродами из стеклоуглерода (аллотропной формы углерода типа фуллерена, GCE), модифицированными оксидированным графеном rGO и наночастицами золота для детектирования мутаций в гене BRCA1 также имеет очень низкий предел, порядка 10 зМ [22]. EIS ДНК-сенсор с электродами из GCE/rGO имеет чувствительнось 3,2 зМ [23]. Наименьший предел чувствительности – 0,39 зМ достигнут для электрохимических сенсоров с электродами вида GCE/N-допированный мультиграфеновый аэрогель / золотые нанозвездочки [24]. Такие высокочувствительные сенсоры могут быть использованы для свободно циркулирующей ДНК в сыворотке крови человека с концентрациями 3 нг/мкл [25] или в 40 пг (10 копий геномной ДНК), необходимых для одного анализа [26].

Для углеродных наноструктур характерен топологический транспорт носителей электрического заряда. Их уникальные свойства можно применять для разработки метода детектирования одиночных молекул ДНК на эффектах поверхностного плазмонного резонанса и поверхностно-усиленного рассеяния света, эффектах экранирования в квантовых материалах: графене с металлическими наночастицами, углеродных нанотрубках, графеноподобных монослоях на нанопористом анодном оксиде алюминия (AOA) [1, 27-31].

Нанопоры с диаметром порядка 1 нм могут играть роль молекулярного сита, которое отбирает одноцепочечные ДНК, комплементарные ДНК-зонду, с последующей генерацией отклика электрохимического трансдьюсера и не пропускает несвязавшуюся dsДНК 2-нанометровой толщины [14]. Принцип действия одномолекулярного бионанопорового секвенирования заключается в определении одной молекулы ДНК на протеиновой нанопоре с диаметром отверстия 1,2-1,4 нм с регистрацией ионных токов через поры [14]. Нанобиопоры расположены в липидной мембране. Основная проблема данного метода – точность сборки гена не более 97% из-за числа прочтений не более 2 раз.

Использование не биологических, а более стабильных твердотельных нанопор, легко интегрируемых в электронные МОП-структуры, позволило бы разработать высокоточные системы длинноридового нанопорового секвенирования. Однако все синтезированные твердотельные нанопористые материалы имеют поры большего размера: графеноподобный мономолекулярный слой (монослой) MoS<sub>2</sub> с порами 2,8 нм; нанопористые  $SnO_2$ , AOA и  $Si_3N_4$ с диаметром пор 10 нм. Было предложено закрывать твердотельные нанопоры электродами с наноразрывами шириной 0,7 нм (*puc. 2*). При комплементарном связывании с ssДНК-зондом dsДНК-мишень расплетается и поцепочечно может диффундировать в нанопору через 0,7-нанометровый зазор [32]. Гибридизация регистрируется по изменению квантового туннельного тока.

Преимущество EIS ДНК-сенсоров нефарадеевского типа



*Puc. 4.* **А** — одномолекулярное секвенирование на МУНТ, декорированных расположенными на нанопорах АОА органометаллическими ЛБ-комплексами.

**Б** — принципы функционирования сенсора нефарадеевского типа для детектирования поляризационных процессов в электрически заряженном двойном слое Гельмгольца.

I, II — области поляризации объемного и поверхностного электрического заряда соответственно. Поверхностная зарядовая плотность Дn (r̃) осциллирует в резонансе с колебаниями дипольного момента d̃ гидратного комплекса

заключается в возможности детектирования гибридизации ДНК без меток [2-4]. Это делает их дешевыми, простыми в использовании и перспективными для миниатюризации. Изменения в сопротивлении или емкости двойного приэлектродного слоя индуцируются гибридизацией ДНК-мишени с одноцепочечной зондовой ДНК, адгезированной на углеродную нанотрубку (УНТ) и расположенной в приэлектродной области. Система наносеквенирования на нефарадеевских наносенсорах представлена на рис. 3. Наносенсорный EIS-преобразователь сигнала связывания олигонуклеотидного ssДНК-зонда с dsДНК-мишенью является емкостным сенсором открытого типа и представляет собой встречно-штыревую систему алюминиевых электродов, которые напылены на плоскую ситалловую подложку и покрыты диэлектрическим тонким слоем нанопористого АОА и монослоями наноциклических комплексов высокоспинового октаэдрического

железа Fe(II) с дитионил-пирроловыми лигандами (Fe(II)DTP), получаемых технологией Ленгмюра-Блоджетт (ЛБ). Последующее нанесение многостенных УНТ (МУНТ) дает декорированные металлоорганическими ЛБ-комплексами Fe(II)DTP МУНТ. МУНТ, предварительно функционализированные молекулами ДНК-зонда, являются трансдьюсером сигнала гибридизации.

Гибридизация комплементарной ДНК-мишени с ДНК-зондом в чувствительном слое приводит к проникновению высвободившейся ssДНК через нанополости Fe(II)DTP-монослоя в нанопористый АОА с последующим ее связыванием торцов МУНТ, как показано на рис. 4А. Детектирование целевой последовательности основывается на эффекте экранирования приэлектродного двойного слоя Гельмгольца, приводящего к уменьшению электрической емкости С<sub>dl</sub> двойного слоя. Экранирующий эффект обусловлен резонансным

|                                     | Концентрация<br>ДНК-мишени, мкг/мл | Изменение емкости (–ΔС), пФ |                                        |
|-------------------------------------|------------------------------------|-----------------------------|----------------------------------------|
| Тип ДНК-мишени                      |                                    | ДНК-зонд<br>дикого типа     | ДНК-зонд с SNP-<br>последовательностью |
| Очищенная геномная                  | 10                                 | 2,0                         | 0,1                                    |
| днк из плаценты<br>здоровых доноров | 56                                 | 4,6                         | -0,5                                   |
| Геномная ДНК из тканей КРР          | 20                                 | -2,0                        | 1,5                                    |
|                                     | 40                                 | -1,2                        | 4,7                                    |
|                                     | 40                                 | 3,0                         | 3,0                                    |
| кДНК. КРР                           | 67                                 | 1,2                         | 4,0                                    |
|                                     | 700                                | 0,2                         | 10,0                                   |
| ПЦР ампликоны с кДНК. КРР           | 2                                  | 0,1                         | 1,1                                    |

Таблица 2. Изменение электрической емкости EIS ДНК-наносенсоров при секвенировании различных типов ДНК-мишеней

распадом гидратных комплексов ионов и гидратированных нуклеиновых кислот на собственных частотах ионных осцилляций  $\omega_{res}$ . Графически принципы функционирования электрохимического ДНК-наносенсора представлены на рис. 4Б. Резонансный распад гидратированных ионов усиливается осцилляциями свободного электрического заряда в МУНТ, декорированных адгезированными атомами Fe(II) в высокоспиновом состоянии. Поверхностные состояния приэлектродного МУНТ-содержащего слоя резонируют опосредованно с ионными рекомбинационными процессами на частоте ω<sub>res</sub> следующим образом. Поверхностные состояния возбуждаются квантами электромагнитного поля, испускаемыми в рекомбинационном процессе ион – противоион, так что колебательные моды поверхностной зарядовой плотности  $\Delta n(\vec{r})$  резонансно возбуждаются (рис. 4Б).

С помощью системы, представленной на *puc.* 3, исследовали образцы опухолевой ткани кишечника (колоректальный рак, КРР), которые содержат мутации в гене KRAS, выявленные с помощью ПЦР в режиме реального времени и подтвержденные методом секвенирования по Сенгеру. В табл. 2 представлены результаты распознавания мутации KRAS в различных типах ДНК-мишеней с использованием разработанного нами нового ДНК-наносенсорного EIS-комплекса. Комплементарное связывание плацентарной ДНК, не имеющей мутации гена KRAS, происходит на сенсорах с пробной ДНК дикого типа (ДНК-зонд типа oligo-W), что приводит к уменьшению емкости сенсоров oligo-W. Напротив, электрическая емкость ДНК-сенсора, содержащего ДНК-зонд с однонуклеотидной заменой (ДНК-зонд с SNP-последовательностью, ДНК-зонд oligo-M), практически не изменяется после гибридизации с плацентарной ДНК (отрицательный контроль). Для геномной ДНК, выделенной из опухолевой ткани, снижение емкости регистрируется для oligo-M сенсоров, в то время как емкость сенсоров с ДНК-зондом дикого типа, наоборот, повышается, вероятно, за счет контаминации ДНК-образца. Для образцов комплементарной ДНК (кДНК), полученных с помощью обратной транскрипции с РНК опухолевых клеток, регистрируется понижение емкости сенсоров

обоих типов, в то же время с ростом концентрации ДНК-мишени наблюдается меньшее изменение емкости для сенсора с ДНК-зондом дикого типа. Для образцов кДНК, полученных ПЦР-амплификацией, зарегистрировано снижение емкости сенсора с олигонуклеотидом мутантного типа при низких концентрациях ДНК-мишени (2 мкг/мл).

Предлагаемый нами способ ДНК-идентификации не требует дорогостоящего оборудования и практически не чувствителен к контаминации; результат EIS-анализа различных образцов ДНК может быть получен в течение 30 мин.

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Abdul Rasheed P., Sandhyarani N. // Biosensors and Bioelectronics. 2017. Vol. 97. P. 226.
- 2. Babenka A. S., Grushevskaya H. V., Krylova N.// Int. J. Mol. Medicine. 2018. Vol. 42. P. 16.
- Xuanying Li et al. // Biosensors and Bioelectronics. 2019. Vol. 126. P. 596.
  Grushevskaya H. V., Krylova N. G., Lipnevich I. V. et al. //
- Semiconductors. 2018. Vol. 52, P. 1836.
- WHO. Genomics and world health // Report of a WHO scientific group. 2002. №HLB: QZ 50.
- Shaikh S., Sumant O. DNA sequencing market: global opportunity analysis and industry forecast, 2017–2025 // Allied Market Research, Diagnostics and Biotech. 2018. №LI\_17163. https://www. alliedmarketresearch.com/dna-sequencing-market.
- Ghosh A., Praefcke G. J.K., Renault L. et al. // Nat. Cell Biol. 2006. Vol. 440. P. 101.
- 8. Stolze B., Reinhart S., Bulllinger L. et al. // Sci. Rep. 2015. Vol. 5. P. 8535.
- 9. Heid C. A., Stevens J., Livak K. J. et al. // Genome Res. 1996. Vol. 6. P. 986.
- Методические рекомендации по применению набора реагентов для определения и дифференциации генотипов вируса гепатита С (HCV) в клиническом материале методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией «АмплиСенсНСV-генотип-FL» – М., 2017.
- 11. Liu L., Li Y., Li S. et al. // J. Biomed. Biotech. 2012. Vol. 2012. Article ID251364.
- 12. NGS: высокопроизводительное секвенирование / под ред. Д. В. Ребрикова. М., 2014.
- Наволоцкий Д. В., Крисько А. В., Арнаутов В. А. и др. // Научное приборостроение. 2010. Т. 20. С. 10.
- 14. Rang F. J., Kloosterman W. P., de Ridder J. // Genome Biology. 2018. Vol. 19. Article ID90.
- 15. Next Generation Sequencing 2017–2025. 2018. Report №978–1– 68038–428–4 // https://www.grandviewresearch.com.
- Cottrell C. E., Al-Kateb H., Bredemeyer A. J. et al. // J. Mol. Diagn. 2014. Vol. 16. P. 89.
- Дрибдноходова О., Миронов К. О., Дунаева Е. А. и др. // Клиническая лабораторная диагностика. 2013. №6. С. 49.

Полный список использованных источников

SEE http://innosfera.by/2019/04/DNA