МАТЭМАТЫКА

УДК 519.1

Р. И. ТЫШКЕВИЧ, А. А. ЧЕРНЯК

УНИГРАФЫ. 11

Эта статья— продолжение [1]. В ней приводится характеризация двудольных униграфов. Все необходимые определения содержатся в [1].

§ 2. Алгебра двудольных графов. На множестве всех двудольных графов (множество вершин не фиксируется) определим несколько операций.

1. Частичная бинарная композиция \cdot . Пусть $\Gamma_i = (G_i, A_i, B_i), i = 1, 2$ двудольные графы с непересекающимися множествами вершин. Положим

$$\Gamma_{\mathbf{i}} \circ \Gamma_{\mathbf{2}} = (G, A, B), \quad A = A_{\mathbf{i}} \cup A_{\mathbf{2}}, \quad B = B_{\mathbf{i}} \cup B_{\mathbf{2}},$$

$$G = G_{\mathbf{i}} \cup G_{\mathbf{2}} \cup K_{A_{\mathbf{i}}, B_{\mathbf{2}}}.$$

2. Частичная унарная операция изменения долей t. Пусть двудольный граф $\Gamma = (G, A, B)$ удовлетворяет одному из условий:

(i) в A есть хотя бы две изолированные вершины,

(ii) в B есть хотя бы две вершины, смежные с каждой вершиной из A. Оба вместе эти условия выполняться не могут. Положим

$$\Gamma^t = (G^t, A^t, B^t),$$

где

$$A^t = A \setminus \{a_0\}, \quad B^t = B \cup \{a_0\}, \quad G^t = G \cup K_{A^t, \{a_0\}},$$

 $a_0 \in A$ — изолированная вершина, если выполняется (i), и $A^t = A \cup \{b_0\}$, $B^t = B \setminus \{b_0\}$, G^t получается из G в результате удаления всех ребер ab_0 , $a \in A$, $b_0 \in B$ — вершина, смежная с каждой вершиной из A. В других ситуациях операция t не применима.

3. Унарная операция перехода к дополнительному графу —.

Для двудольного графа Γ Γ — дополнительный двудольный граф. 4. Унарная операция инвертирования T. Для $\Gamma = (G, A, B)$ $\Gamma^T = (G, B, A)$.

Частичную алгебру всех двудольных графов относительно операций

1—4 обозначим К.

Очевидно, если Γ — двудольный униграф, то Γ и Γ^T — также двудоль-

ные униграфы. Из теоремы 2 вытекает

Следствие 3. Если Γ — двудольный униграф, то и Γ^t — двудольный униграф. Если Γ_1 и Γ_2 — двудольные униграфы и композиция $\Gamma_1 \circ \Gamma_2$ определена, то она также является двудольным униграфом.

Из следствий 2 и 3 вытекает

Следствие 4. Любой двудольный униграф либо является стандартным, либо может быть получен из стандартного двудольного униграфа в результате применения операции изменения долей.

Известна

Лемма 9 ([2], лемма 25). Пара последовательностей (р, ..., р), (q, ..., q) неотрицательных целых чисел длин т и п соответственно явля-

ется униграфической тогда и лишь тогда, когда выполняется одно из следующих условий:

1)
$$p = 0$$
, $q = 0$;

2)
$$q = 1, p = \frac{n}{m}$$
;

3)
$$p = 1, q = \frac{m}{n}$$
;

4)
$$p = n - \frac{n}{m}$$
, $q = m - 1$;

5)
$$p = n - 1$$
, $q = m - \frac{m}{n}$;

6) p = n, q = m.

Непосредственно проверяется

Лемма 10.

1) операция о ассоциативна;

$$2) \ (\Gamma_1 \circ \Gamma_2)^T = \Gamma_2^T \circ \Gamma_1^T,$$

3) $(\Gamma_1 \circ \Gamma_2) = \Gamma_2 \circ \Gamma_1$;

4) операции — и Т инволютивны и перестановочны друг с другом.

Введем классы U_i , i=1, 2, 3, 4, двудольных графов.

Скажем, что граф G принадлежит классу X, если каждая связная компонента этого графа является звездой или ребром $(K_1, n, n \geqslant 1)$. Для $G \in X$ построим разбиение $V = A \cup B$ множества его вершин V, отнеся к Aпо одной вершине максимальной степени из каждой связной компоненты графа С. Класс всех строящихся таким образом двудольных графов (G, A, B) обозначим U_1 (рис. 1).

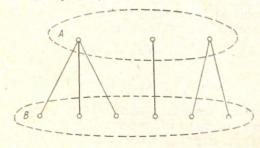


Рис. 1

Пусть $\Gamma_i = (G_i, A_i, B_i) \in U_1, i = 1, 2$, такие, что: 1) множества вершин Γ_1 и Γ_2 не пересекаются;

2) $G_1 = mK_{1,n}$ — объединение m копий графа $K_{1,n}$ с попарно непересекающимися множествами вершин, m > 1;

3) $G_2 = pK_{1,n+1}$, $p \gg 1$. Определим двудольный граф (G, A, B) следующими условиями:

1) $A = A_1 \cup A_2$, $B = B_1 \cup B_2 \cup \{d\}$; d — новая вершина; 2) $G = G_1 \cup G_2 \cup K_{A_1, \{d\}}$. Класс всех таких двудольных графов (G, A, B)

обозначим U_2 (рис. 2). Пусть $\Gamma=(G,\ A,\ B)\in U_2$, такой, что m=2. Определим двудольный граф $\Gamma = (G, A, B)$ следующими условиями:

1) $A = A \cup \{c\}, \ B = B, \ c$ — новая вершина;

2) $G = G \cup K_{B_1 \cup B_2, \langle c \rangle}$.

Класс всех таких двудольных графов Γ обозначим U_3 (рис. 3). Наконец, обозначим U_4 класс всех пустых двудольных графов.

Следствие 5. Для 1≤і≤4 всякий двудольный граф, принадлежащий классу U_i , является двудольным униграфом.

Доказательство. Для пустых двудольных графов утверждение очевидно. Пусть $\Gamma = (G, A, B) \in U_i$, $1 \le i \le 3$, и G допускает замену $t = (a_1 a_2 b_1 b_2)$, $a_i \in A$, $b_i \in B$. Возможны, с точностью до симметрии (свойство 2 замены в [1]), только следующие четыре случая:

1) $a_i \neq c$, $b_i \neq d$;

2) $\Gamma \in U_2 \cup U_3$, $a_1 \in A_1$, $a_2 \in A_2$, $b_1 = d$, $b_2 \in B_2$,

3) $\Gamma \in U_3$, $a_1 \in A_1$, $a_2 = c$, $b_1 = d$, $b_2 \in B_1$; 4) $\Gamma \in U_3$, $a_1 \in A_1$, $a_2 = c$, $b_1 = d$, $b_2 \in B_2$.

В первом случае пусть $\psi = (b_1, b_2)$ — транспозиция, во втором ψ — произведение транспозиции (a_1, a_2) и произвольной биекции из окружения

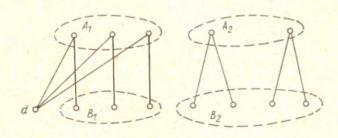


Рис. 2

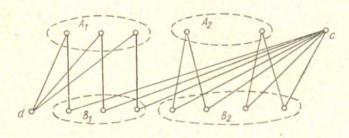


Рис. 3

 a_1 в B_1 на окружение a_2 в $B_2 \setminus \{b_2\}$, в третьем $\psi = (d, b_2)$, в четвертом произведение транспозиции (a_1, a) , где $\{a_1, a\} = A_1$, и произвольной биекции из окружения a в B_1 на окружение a_2 в $B_2 \setminus \{b_2\}$. Очевидно, ψ : $G \rightarrow tG$ — изоморфизм графов.

Теорема 3. Множество U всех двудольных униграфов есть подалгебра в K. $U_1 \cup U_2 \cup U_3 \cup U_4$ является системой образующих алгебры U.

Доказательство. Из следствий 3 и 5 вытекает, что U— подалгебра в K, $U_i \subset U$. Учитывая следствие 4, остается доказать, что всякий стандартный двудольный униграф может быть выражен через элементы множеств U_i посредством операций алгебры K. Пусть $\Gamma = (G, A, B)$ — стандартный двудольный униграф ступени l.

1. l=0, Γ дольно-регулярен. Если Γ и Γ не пустые, то по лемме 9 какой-либо из Γ , Γ , Γ^T , Γ^T принадлежит U_1 .

 $2. \ l = 1. \ \Phi$ иксируем полярный ряд

$$\Gamma^0 = (G^0, A^0, B^0) \supset \dots \supset \Gamma^l = (G^l, A^l, B^l)$$
 (1)

графа Γ . Пусть G^1 допускает замену

$$t = (a_1 a_2 b_1 b_2), \quad a_i \in A^0, \quad b_i \in B^0.$$
 (2)

Согласно лемме 7, для $V = A \cup B$ существует разбиение

$$V = E_4 \cup F_2 \cup V^1 \cup E_2 \cup F_4, \tag{3}$$

где

$$E_1 \cup E_2 \subseteq A$$
, $F_1 \cup F_2 \subseteq B$, $E_1 \sim B^0$, $E_2 \nsim B^0$, $F_1 \sim A^0$, $F_2 \nsim A^0$.

Замены $(a_2e_1f_1b_1)$, $(b_1f_2a_1e_2)$, $e_i\in E_i$, $f_i\in F_i$, исключаются леммой 7, поэтому $E_1\sim F_1$, $E_2\not\sim F_2$. Положим

$$\Gamma_1 = \Gamma < E_1, F_2 >, \quad \Gamma_2 = \Gamma < A^0, B^0 >, \quad \Gamma_3 = \Gamma < E_2, F_1 >.$$

Теперь

$$\Gamma = \Gamma_1 \circ \Gamma_2 \circ \Gamma_3. \tag{4}$$

Одного из сомножителей Γ_1 или Γ_3 в (4) может и не быть, например, $E_1 \cup F_2 = \emptyset$, $\Gamma = \Gamma_2 \circ \Gamma_3$ (в этой ситуации необходимо $E_2 \cup F_1 \neq \emptyset$). Итак, Γ есть композиция двух или трех двудольных графов с меньшим, чем у Γ , числом вершин. Очевидно, степени вершин из A (также из B), входящих в разные слои разбиения (3), попарно различны, поэтому в силу леммы $7 \Gamma_i$ являются двудольными униграфами.

Пусть теперь ни для одного из полярных рядов (1) длины l G^l не допускает замен вида (2). Множество V разобьем на звенья: $V = A_1 \cup \ldots \cup A_s \cup B_1 \cup \ldots \cup B_t$, $A_i \subseteq A$, $B_i \subseteq B$. По лемме 9 $A_i \sim B_j$ или $A_i \nsim B_j$. Пусть $A_1 -$ то из звеньев A_i , которое смежно с максимальным количеством звеньев B_j , \overline{D}_4 — объединение тех B_j , что $A_1 \sim B_j$, $A_2 = A \setminus A_1$, $\overline{B}_2 = B \setminus \overline{B}_1$. Пусть далее $a_2 \in \overline{A}_2$, $b_2 \in \overline{B}_2$, $a_2 \sim b_2$. Тогда существует $b_1 \in \overline{B}_1$, $b_1 \nsim a_2$, и G допускает замену $(a_1a_2b_4b_2)$, что противоречит лемме 7. Следовательно, $\overline{A}_2 \nsim \overline{B}_2$, $\Gamma = \Gamma_1 \circ \Gamma_2$, где $\Gamma_1 = \Gamma < A_1$, $B_2 >$, $\Gamma_2 = \Gamma < \overline{A}_2$, $B_1 >$. По лемме 7 Γ_1 и Γ_2 — двудольные униграфы.

3. l > 1. Отдельно рассмотрим две возможности:

1) последний член какого-либо из полярных рядов (1) длины l допускает замену

$$t = (a_1 a_2 b_1 b_2), \quad a_i \in A^{l-1}, \quad b_i \in B^{l-1}.$$

Согласно леммам 7 и 8, для V_г-существует разбиение

$$V^{l-1} = V^l \cup D,$$

где D — звено, входящее в A или в B. Примем второй вариант, перейдя, если нужно, от Γ к Γ^T . Далее по лемме 7 $A^{l-1} \sim D$ или $A^{l-1} \not\sim D$. Снова примем второй вариант, заменив, если нужно, Γ дополнительным. Итак:

$$V^{l-1} = V^l \cup D$$
, $D \subset B$, $D \nsim A^{l-1}$.

Теперь для V^{l-2} существует разбиение

$$V^{l-2} = E_1 \cup F_2 \cup V^{l-1} \cup E_0 \cup E_2 \cup F_1, \tag{5}$$

где

$$E_0 \cup E_1 \cup E_2 \subset A$$
, $F_1 \cup F_2 \subset B$, $E_1 \sim (B^{l-1} \cup D)$, $E_2 \nsim (B^{l-1} \cup D)$,

$$F_1 \sim A^{l-1}, \quad F_2 \nsim A^{l-1}.$$

Если существуют

$$e^1 \in E_0, \quad d \in D, \quad e^1 \sim b_2, \quad e^1 \nsim d,$$
 (6)

то существует $e^2 \in E_0$, $e^2 \sim d$, $e^2 \not\sim b_2$. Согласно лемме 7, $e^2 \not\sim b_1$ и G^{l-2} допускает замену $t_1 = (a_1e^2b_1d)$. Пусть $H = t_1G^{l-2}$, $H^{l-1} = H < V^{l-1} >$. H^{l-1} получается из G^{l-1} в результате замены ребра a_1b_1 ребром a_1d . Следовательно, в H^{l-1}

$$\deg d = \deg b_2. \tag{7}$$

С другой стороны, H^{l-1} допускает замену $(a_1a_2db_2)$. Из (7) и леммы 7 следует, что окружения вершин d и b_2 в $V \times V^{l-1}$ совпадают, что противоречит (6).

Из отрицания (6) и леммы 7 вытекает

$$E_0 \nsim B^{l-1} \tag{8}$$

(все вершины из B^{l-1} имеют равные окружения в $V \setminus V^l$). Замена $(b_1f_2a_1e_0)$, $e_0 \in E_0$, $f_2 \in F_2$, исключается леммой 7, поэтому $E_0 \not\sim F_2$. Пусть существуют $e_0 \in E_0$, $f_1 \in F_1$, $e_0 \not\sim f_1$. Из определения E_i и (7) вытекает, что существует $d \in D$, $d \sim e_0$. G^{l-2} допускает замену $(a_1e_0f_1d)$, что противоречит лемме 7. Итак, $E_0 \sim F_1$. Пусть l > 2. В силу лемм 7 и 8 из (5) получаем

$$V^{l-2} = V^{l-1} \cup C$$
, $C \subseteq E_0$.

Для V^{l-3} существует разбиение

$$V^{l-3} = E_1 \cup F_2 \cup V^{l-2} \cup F_0 \cup E_2 \cup F_1,$$

$$E_1 \cup E_2 \subset A, \quad F_0 \cup F_1 \cup F_2 \subset B,$$

$$(9)$$

 $E_1 \sim (B^{l-1} \cup D), \quad E_2 \nsim (B^{l-1} \cup D), \quad F_1 \sim (A^{l-1} \cup C), \quad F_2 \nsim (A^{l-1} \cup C) \ (E_i \ \text{и} F_i \text{ не связаны с теми, что в (5)). Пусть, например,}$

$$c^{l-2}=a_1^{l-2}+1, c\in C.$$

Тогда существуют $f_0 \in F_0$, $c \in C$, $f_0 \sim c$, $f_0 \nsim a_1$, и G^{l-3} допускает замену $t_2 = (a_1 c b_1 f_0)$. Положим

 $t_0G^{l-3} = H$, $H < V^{l-2} > = H^{l-2}$.

 H^{l-2} получается из G^{l-2} в результате замены ребра a_1b_1 ребром b_1c , в H^{l-2} deg c— deg a=2, что противоречит лемме 7. Итак:

$$F_0 \not\sim C.$$
 (10)

Теперь имеем

$$|F_0| = 1, \tag{11}$$

так как $c^{l-3}=a_1^{l-3}$. Если положим $c^{l-2}=a_1^{l-2}-1$, то, аналогично предыдущему, получим снова (11), только вместо (10) будет $F_0 \not\sim A^{l-1}$.

Замены $(a_2e_1f_0b_1)$, $(a_4e_2b_1f_0)$, $e_i \in E_i$, $f_0 \in F_0$, исключаются леммой 7, сле-

Пусть l > 3. Из (9) имеем $E_1 \sim F_0$, $E_2 \nsim F_0$.

$$E_1 \sim F_0, \quad E_2 \nsim F_0. \tag{12}$$

$$V^{l-3} = V^{l-2} \cup \{f_0\}.$$

Для V^{l-4} существует разбиение

$$V^{l-4} = E_1 \cup F_2 \cup V^{l-3} \cup E_0 \cup E_2 \cup F_1, \tag{13}$$

где

$$E_0 \cup E_1 \cup E_2 \subset A$$
, $F_1 \cup F_2 \subset B$,

 $E_1 \sim (B^{l-1} \cup D \cup \{f_0\}), \ E_2 \nsim (B^{l-1} \cup D \cup \{f_0\}), \ F_1 \sim (A^{l-1} \cup C), \ F_2 \nsim (A^{l-1} \cup C), \ F_2 \nsim (A^{l-1} \cup C).$ По лемме 7 замены $(a_1e_0b_1f_0), \ (df_0ce_0), \ c \in C, \ d \in D, \ e_0 \in E_0, \$ невозможны, поэтому $f_0 \nsim E_0$. Все вершины из $B^{l-1} \cup D$ имеют равные окружения в E_0 , следовательно, $(B^{l-1} \cup D) \sim E_0$. Теперь имеем $|E_0| = 1$. Замены $(a_2e_0f_1b_1), \ (f_0f_2a_1e_0), \ e_0 \in E_0, \ f_i \in F_i$, исключаются леммой 7, следовательно, $E_0 \sim F_1$, $E_0 \nsim F_2$. Далее

 $b_0^{l-4} - b_1^{l-4} = |A^{l-1}| - 2, |A^{l-1}| = 2.$

Пусть l > 4. Тогда, согласно лемме 9,

$$a_1^l = \frac{|B^{l-1}|}{2}, \quad a_1^{l-4} = \frac{|B^{l-1}|}{2} + 1, \quad e_0^{l-4} = |B^{l-1}| \cup D|,$$

$$e_0^{l-4} - a_1^{l-4} > 1,$$

что противоречит лемме 7. Итак, $l \le 4$.

При l = 2, 3, 4 V имеет соответственно вид (5), (9), (13). Если в (5), (9) или (13)

$$E_1 \cup E_2 \cup F_1 \cup F_2 = \emptyset, \tag{14}$$

то $G \in U_1$, U_2 или U_2 соответственно.

Пусть (14) не верно. Замены $(a_2e_1f_1b_1)$, $(b_1f_2a_1e_2)$, $e_i\in E_i$, $f_i\in F_i$, невозможны по лемме 7, следовательно, $E_1\sim F_1$, $E_2\sim F_2$. Положим $\Gamma_1=\Gamma<< E_1$, $F_2>$, $\Gamma_3=\Gamma< E_2$, $F_1>$, $\Gamma_2=\Gamma< A^{l-1}\cup E_0$, $B^{l-1}>$ для (5), $\Gamma_2=\Gamma< A^{l-2}$, $B^{l-2}\cup F_0>$ для (9), $\Gamma_2=\Gamma< A^{l-3}\cup E_0$, $B^{l-3}>$ для (13). В силу леммы 7 каждый из Γ_j , если он есть, является униграфом;

$$\Gamma = \Gamma_1 \circ \Gamma_2 \circ \Gamma_3; \tag{15}$$

2) отрицание первой возможности.

Фиксируем полярный ряд (1) длины l. Пусть $V^l = A^{l-1} \cup B^{l-1}$, $A^{l-1} \nsim B^{l-1}$ (если $A^{l-1} \sim B^{l-1}$, то перейдем к Γ). Для V^{l-1} имеем разбиение

$$V^{l-1} = V^l \cup D$$
, $D \subset B$, $D \sim A^{l-1}$

(если нужно, заменим Γ на Γ^T);

$$|A^{l-1}| = 1, (16)$$

иначе имели бы первую возможность. Для V^{l-2} существует разбиение

$$V^{l-2} = E_1 \cup F_2 \cup V^{l-1} \cup E_0 \cup E_2 \cup F_1, \tag{17}$$

где

$$E_0 \cup E_1 \cup E_2 \subset A$$
, $F_1 \cup F_2 \subset B$,

$$E_1 \sim (B^{l-1} \cup D), \quad E_2 \nsim (B^{l-1} \cup D), \quad F_1 \sim A^{l-1}, \quad F_2 \nsim A^{l-1}.$$

Как и выше, имеем $E_1 \sim F_1$, $E_2 \nsim F_2$.

Заметим, что степени вершин из E_0 в $G = G < V^{l-2} \setminus (F_1 \cup F_2) >$ попарно различны. В самом деле, пусть $\bar{E} \subseteq E_0$ — звено G, $|\bar{E}| > 1$. Положим

$$\bar{V}^{l-1} = \tilde{E} \cup B^{l-1} \cup D.$$

Если степени $b \in B^{l-1}$, $d \in D$ в $G \subset V^{l-1} >$ различны, то можно взять \tilde{E} в качестве A^{l-1} , что противоречит (16). Пусть степени b и d равны. Если существует $e_1 \in \tilde{E}$, $e_1 \sim b$, $e_1 \nsim d$ ($e_1 \nsim b$, $e_1 \sim d$), то существует и $e_2 \in \tilde{E}$, $e_2 \nsim b$, $e_2 \sim d$ ($e_2 \sim b$, $e_2 \nsim d$), и $G < V^{l-1} >$ допускает замену ($e_2 e_1 db$) $((e_2e_1bd))$, что противоречит лемме 7, ибо окружения вершин d и b в A^{l-1} различны. Доказано, что $|\tilde{E}|=1$.

Пусть теперь существуют

$$e_1 \in E_0, \quad b \in B, \quad d \in D, \quad e_1 \sim d, \quad e_1 \nsim b.$$
 (18)

Тогда существует $e_2 \in E_0$, $e_2 \nsim d$, $e_2 \sim b$, и $G = G < V^{l-2} \setminus A^{l-1} >$ допускает замену (e_1e_2db) . Степени вершин b и d в G различны, поэтому степени e_1 и e_2 в G и, следовательно, в G^{l-2} совпадают. Таким образом, в V^{l-2} есть такое звено $\tilde{E} \subseteq E_0$, что $|\tilde{E}| > 1$. Следовательно, (18) невозможно и для $e \in E_0$, $d \in D$ истинна импликация

$$(e \sim d) \Rightarrow (e \sim B^{l-1}). \tag{19}$$

Если существуют e_1 , $e_2 \in E_0$, $d_1 \in D$, $e_1 \sim d_1$, $e_2 \not\sim D$, то существуют $b \in E^{l-1}$, $d_2 \in D$, $b \sim e_2$, $d_2 + e_1$, и $G < V^{l-2} \setminus \{e_2\} >$ допускает замену (ae_1d_2b) , что противоречит лемме 7, ибо a и e_1 имеют разные степени, а b и d_2 — разные окружения в $\{e_2\}$. Поэтому выполняется одно из двух условий:

$$E_0 \not\sim D, \quad E_0 \sim B^{l-1}.$$
 (20)

Замены (df_2ae_0) , (ae_0f_1b) , $f_i\in F_i$, исключаются леммой 7, поэтому $E_0\not\sim F_2$, $E_0\sim F_1$. Если

$$E_1 \cup E_2 \cup F_1 \cup F_2 \neq \emptyset, \tag{21}$$

то положим

 $\Gamma_1 = \Gamma < E_1$, $F_2 >$, $\Gamma_2 = \Gamma < A^{l-2} \cup E_0$, $B^{l-2} >$, $\Gamma_3 = \Gamma < E_2$, $F_1 >$. По лемме 7 Γ_j — двудольные униграфы. Снова верно равенство (15).

Пусть (21) не верно. При выполнении первого из условий (20) $\Gamma \in U_1$, второго — $\overline{\Gamma} \in U_1$.

При l > 2 из (17) получаем разбиение

$$V^{l-2} = \{a\} \cup B^{l-1} \cup D \cup \{e\}, \quad \{a\} = A^{l-1},$$

 a^{l-2} и e^{l-2} отличаются на 1. Поменяв, если нужно, ролями a и e, будем считать, что

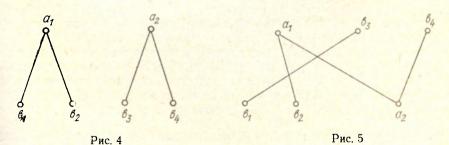
 $e^{l-2} = a^{l-2} + 1, \quad e \sim B^{l-1}.$

Теперь существует $d \in V^{l-3} \setminus V^{l-2}$, $d \sim a$, $d \nsim e$. Для $b \in B^{l-1}$ существует $f \in V^{l-1} \setminus V^{l-2}$, удовлетворяющее какому-либо из условий $f \sim d$, $f \nsim b$ или $f \nsim d$, $f \sim b$. И то и другое противоречит лемме 7, так как в первом случае G^{l-3} допускал бы замену (efbd), во втором — (afdb). Доказано, что $l \leqslant 2$.

Итак, в любом случае один из $\Gamma, \ \overline{\Gamma}, \ \Gamma^T, \ \overline{\Gamma}^T$ принадлежит какому-либо U_i или он есть композиция двудольных униграфов с меньшим числом вершин. Теорема вытекает теперь из конечности множества вершин.

Замыкание множества $U_1 \cup U_2 \cup U_3 \cup U_4$ относительно операций — и T обозначим L. Заметим, что в алгебре K операция t может быть выражена через —. Поэтому, учитывая лемму 10, получаем

Следствие 6. Любой двудольный униграф либо принадлежит L, либо является композицией элементов множества L.



В заключение приведем пример, показывающий, что свойство быть двудольным униграфом зависит от выбора разбиения на доли. Пусть G — граф, изображенный на рис. 4. Положив $A_1 = \{a_1, a_2\}$, $B_1 = \{b_1, b_2, b_3, b_4\}$, получим двудольный униграф $\Gamma = (G, A_1, B_1)$. Пусть $A_2 = \{a_1, b_3, b_4\}$, $B_2 = \{b_1, b_2, a_2\}$. Очевидно, граф, изображенный на рис. 5, имеет те же доли A_2 , B_2 , те же степени вершин и не изоморфен (G, A_2, B_2) .

Summary

The necessary technique for characterization of graphs and bipartite graphs defined by the degrees of their vertices has been developed.

Литература

1. Тышкевич Р. И., Черняк А. А. Весці АН БССР, сер. фіз.-мат. навук, № 5, 1978. 2. Li Shuo-Yen R. J. Combin. Theory, **B19**, 1, 1975.

Белорусский государственный университет им. В.И.Ленина, Институт проблем надежности и долговечности машин АН БССР

Поступила в редакцию 04.04.78

УЛК 512+519.4

НГО ДАК ТАН

О МИНИМАЛЬНЫХ ТРАНЗИТИВНЫХ ГРУППАХ ПОДСТАНОВОК НА СЧЕТНОМ МНОЖЕСТВЕ

Целью этой работы является доказательство следующей теоремы. Теорема. При счетном X в финитарной симметрической группе SF(x) существуют минимальные транзитивные подгруппы. Для каждой

из них ни A(X), ни SF(X) не является гомоморфным образом.

Этот результат является интересным дополнением полученного ранее автором результата ([1], теорема 7), утверждающего, что всякая минимальная транзитивная группа подстановок на несчетном множестве со-

держит подстановку с бесконечным носителем.

§ 1. Обозначения и определения. Пусть Ω — непустое множество, $|\Omega|$ — его мощность, $S(\Omega)$ и $SF(\Omega)$ обозначим соответственно полную симметрическую и финитарную симметрическую группы. $g(\omega)$ — образ точки $\omega \in \Omega$ под действием подстановки $g \in S(\Omega)$. $\langle g_i | i \in I \rangle_G (\langle A_i | i \in I \rangle_G)$ — подгруппа, порожденная элементами g_i , $i \in I$ (множествами элементов A_i , $i \in I$) группы G. $\langle g_i | i \in I | G \rangle_G$ (соответственно $\langle A_i | i \in I \rangle_G \rangle$ — нормальная подгруппа, порожденная в группе G элементами g_i , $i \in I$ (соответственно множествами элементов A_i , $i \in I$). A < B - A есть подгруппа B. A < B - A есть нормальная подгруппа A_i , $A_i \in I$ 0. $A_i \in I$ 1 (соответственно фактор-группы. $A_i \in I$ 2 — нейтральные элементы группы и соответственно фактор-группы. $A_i \in I$ 3 — нормализатор $A_i \in I$ 4 — $A_i \in I$ 5 — $A_i \in I$ 6 — $A_i \in I$ 7 — остраничение $A_i \in I$ 8 — $A_i \in I$ 9 — A_i

Пусть $G < S(\Omega)$. $\Gamma \subset \Omega$ называется блоком группы G, если для любого $g \in G$, $g(\Gamma) = \Gamma$ или $g(\Gamma) \cap \Gamma = \emptyset$. Если Γ — блок группы G, то для любого $g \in G$, $g(\Gamma) = \Lambda$ — блок группы G, который называем блоком группы G, полученным из Γ элементом g. Далее, если G транзитивна, Ω_1 — ее блок, $\Omega = \bigcup_{i \in I} \Omega_i$ — разбиение Ω на блоки Ω_i , полученные

из Ω_1 . Каждому $g \in G$ мы ставим в соответствие подстановку g на I следую-