ционному бюллетеню №4 // Комитет по энергоэффективности при СМ РБ. . Мн.: 2004. – 35 с.

ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ ОКСИДОВ Ві₂О₃ И Fe₂O₃

Корзун Б.В., ОИФТТП НАН Б, г. Минск Волчик Т.В., Соболь В.Р., БГАТУ, г. Минск

В настоящее время наблюдается возрастающий научный интерес к сегнетомагнетикам, или в современной терминологии, мультиферроикам, в которых сосуществует магнитное и электрическое упорядочение [1, 2]. Это позволяет создавать на основе одного и того же материала устройства, преобразующие информацию в форме намагниченности в электрическое напряжение и обратно.

Одним из наиболее исследуемых магнитоэлектрических материалов является феррит висмута $BiFeO_3$ [3], что обусловлено присущими для него высокими температурами магнитного ($T_N = 643$ K) и электрического ($T_C = 1083$ K) упорядочений, а также наличием гигантского магнитоэлектрического эффекта [4]. Для получения $BiFeO_3$ разработан ряд достаточно сложных методик (твердофазный синтез из оксидов Bi_2O_3 и Fe_2O_3 , синтез с использованием солевых матриц), тем не менее для всех методик остро стоит проблема получения однофазного материала, одной из причин чего может быть наличие целого ряда полиморфных превращений и аномалий в оксиде висмута Bi_2O_3 [5].

Настоящая работа посвящена исследованию взаимодействия оксида висмута (III) Bi_2O_3 и оксида железа (III) Fe_2O_3 с помощью рентгенофазового ($P\Phi A$) и дифференциально-термического анализов (ДТА).

Ві₂О₃ марки XЧ и Fе₂О₃ марки ОСЧ смешивали и подвергали сухому помолу в течение 1 часа в яшмовых ступках. Полученную смесь загружали в кварцевые сосудики и производили ДТА на воздухе, используя многократное термоциклирование. РФА исходных компонентов показал, что Ві₂О₃ марки XЧ сосуществует в 2 полиморфных модификациях — моноклинной с параметрами решетки, хорошо соответствующими данным [6] и гексагональной с параметрами решетки, хорошо соответствующими данным [7].

На рис. 1 приведена термограмма образца Bi_2O_3 при его термоциклировании до температур, незначительно превышающих температуры полиморфных превращений и плавления. Тепловой эффект A может быть связан с $X\Psi$ полиморфным превращением из метастабильной гексагональной в устойчивую моноклинную структуру и носит обратимый характер.

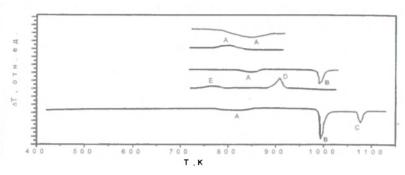


Рис. 1. Термограммы (верхние кривые – нагрев, нижние кривые - охлаждение) ${\rm Bi}_2{\rm O}_3$ марки XЧ

При нагреве тепловой эффект В с температурой окончания 990 К обусловлен переходом из моноклинной структуры в кубическую структуру, а плавление (тепловой пик С) осуществляется при 1100 К. При охлаждении наблюдаются тепловые пики С (кристаллизация), D и Е. Учитывая, что РФА при комнатной температуре порошка Bi_2O_3 марки ХЧ после плавления на воздухе и последующего охлаждения со скоростью 200 К/ч показал, что он сосуществует в 2 полиморфных модификациях – кубической с параметрами, близкими к [8] и кубической с параметрами, близкими к [9], можно предположить, что эффект D вызывается переходом из кубической (γ- Bi_2O_3) структуры в тетрагональную, а эффект Е – переходом тетрагональной модификации в кубическую. Такое поведение соединения Bi_2O_3 может быть объяснено тем обстоятельством, что некоторые его полиморфные превращения сопровождаются выделением или поглощением кислорода и поэтому зависят от парциального давления O_2 .

На рис. 2 представлена термограмма смеси состава 0.5Bi₂O₃+0.5Fe₂O₃, находящейся на воздухе. Кроме тепловых эффектов A и B, обусловленных полиморфными превращениями Bi_2O_3 , и его плавления C, наблюдаются экзогермические тепловые эффекты I и 2, указывающие на начало реакции образования тройных соединений в системе Bi_2O_3 - Fe_2O_3 . На основе РФА смеси, охлажденной до комнатной температуры, можно сделать вывод, что для получения гомо генных образцов твердофазный синтез необходимо проводить, во-первых, в несколько стадий, а во-вторых, с учетом происходящих в оксиде висмута (III) Bi_2O_3 полиморфных превращений.

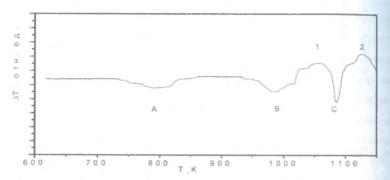


Рис. 2. Термограмма (кривая нагрева) смеси состава $0.5 \mathrm{Bi}_2 \mathrm{O}_3 + 0.5 \mathrm{Fe}_2 \mathrm{O}_3$, находящейся на воздухе

Литература

- 1. А.К. Звездин, А.П. Пятаков, УФН, 174, 4, 465 (2004).
- 2. W. Prellier, M.P. Singh, P. Murugavel, J. Phys.: Cond. Mat., 17, R803 (2005).
- 3. M. Murakami, S. Fujino, S.-H. Kim, et al., Appl. Phys. Lett., 88, 112505 (2006).
- 4. J. Wang, H. Zheng, V. Nagarajan, et al, Science, 299, 1719 (2003).
- 5. В.Г. Орлов, А.А. Буш, С.А. Иванов, В.В. Журов, ФТТ, 39, 5, 865 (1997).
- 6. ICDD. Card 71-0465.
- 7. ICDD. Card 51-1161.
- 8. ICDD. Card 74-1375.
- 9. ICDD. Card 45-1344.