Систематизация знаний обучающихся средствами многомерных дидактических инструментов

Т. А. Шакун

Статья посвящена проблеме систематизации знаний обучающихся, в качестве решения которой рассматриваются многомерные дидактические инструменты. Описан мастер-класс, в ходе которого на материале по теме «Механизмы обучения» осуществлялось ознакомление педагогов с технологией создания логико-смысловых моделей.

The article is devoted to the problem of systematization of the students' knowledge. The multidimensional didactic tools are offered here as a solution. Also there is a description of the master class, during which teachers are introduced to the technology of creating logical and conceptual models in the topic "Learning mechanisms".

Ключевые слова: систематизация знаний, многомерные дидактические инструменты, логико-смысловая модель, механизмы обучения.

Keywords: knowledge systematization, multidimensional didactic tools, logical and conceptual model, learning mechanisms.

Важными показателями качества образования наряду с востребованностью и применимостью полученных знаний являются их фундаментальность, системность и прочность. Однако специфика заочной формы реализации образовательных программ переподготовки руководящих работников и специалистов, имеющих высшее образование, обусловливает возникновение проблемы системности знаний обучающихся. Это связано с тем, что учебный процесс очных этапов обучения осуществляется в интенсивном информационном режиме: большие объёмы содержания учебных дисциплин осваиваются высокими темпами и за относительно короткие промежутки времени.

С целью решения данной проблемы обратимся к ассоциативнорефлекторной теории обучения, согласно которой образование представляет собой постепенный процесс формирования у обучающихся различных ассоциаций. Они могут носить локальный характер и представлять собой изолированные друг от друга знания либо при-

обретать устойчивый характер и обеспечивать возникновение прочной системы знаний. При этом ассоциации высшего порядка формируются только в результате аналитико-синтетической деятельности головного мозга обучающихся.

В качестве возможных оптимальных средств активизации аналитико-синтетической мыслительной деятельности обучающихся, способствующей формированию системных знаний, могут выступать многомерные дидактические технологии Вяляясь средствами когнитивной визуализации знаний, данные дидактические инструменты позволяют в результате многомерного осмысления учебного материала создавать его наглядные модели, которые включают основные понятия, связанные между собой по смыслу, и выступают в качестве наглядных мыслительных опор.

"

Являясь средствами когнитивной визуализации знаний, многомерные дидактические технологии позволяют в результате глубокого осмысления учебного материала создавать его наглядные модели, которые включают

основные понятия, связанные между собой по смыслу, и выступают в качестве наглядных мыслительных опор.

Использование многомерных дидактических инструментов позволяет обучающимся:

- дифференцировать учебный материал по степени важности и значимости;
- сконцентрироваться на усвоении главного, тем самым уменьшив объём запоминаемой информации;
- структурировать большие объёмы изучаемой информации в осмысленную систему знаний.

Одним из многомерных дидактических инструментов является логико-смысловая модель, которая представляет собой систему из восьми координат, на каждой из которых расположены ключевые понятия, раскрывающие различные аспекты рассматриваемой темы (рис. 1).

Технология создания логико-смысловой модели предполагает прохождение следующих этапов.

 $^{^1}$ Штейнберг, В. Э. Теория в практической многомерной технологии / В. Э. Штейнберг. — М. : Народно- образование 2015. — 350 с.

- 1. Определение темы и размещение её краткой формулировки в центре логикосмысловой модели.
- 2. Определение круга рассматриваемых в рамках заданной темы вопросов, в соответствии с которыми осуществляется формулирование кратких названий координат.
- 3. Размещение на каждой из координат необходимого количества опорных узлов с основными понятиями и фактами, раскрывающими содержание каждого рассматриваемого вопроса.
- 4. Обозначение штриховыми линиями связей между опорными понятиями различных координат (при необходимости).

Разработка логико-смысловой модели за счёт осуществления качественной когнитивной обработки большого объёма учебной информации с последующей её структуризацией и визуализацией будет способствовать усвоению обучающимися определённой темы и формированию прочной системы знаний.

Рисунок 1 — Каркас логико-смысловой модели

Татьяна Александровна Шакун, преподаватель кафедры менеджмента и образовательных технологий Института повышения квалификации и переподготовки Белорусского государственного педагогического университета имени Максима Танка

С целью ознакомления педагогов с технологией создания логико-смысловых моделей и возможностями их применения в образовательном процессе в рамках ІІІ Международной научно-практической конференции «Дополнительное образование взрослых: международные тенденции и национальные приоритеты», организованной Институтом повышения квалификации и переподготовки Белорусского государственного педагогического университета имени Максима Танка, был проведён мастер-класс «Как не потеряться в потоке информации: многомерные дидактические инструменты в интерактивном режиме».

В процессе мастер-класса педагоги осваивали технологию создания логико-смысловых моделей на материале темы «Механизмы обучения». Под механизмами обучения понимаются научно обоснованные способы организации взаимодействия педагога и обучающихся в учебном процессе, определяющие его специфику и порядок реализации.

Учение о механизмах обучения берёт своё начало в идее И. И. Цыркуна о полигенетической природе обучения [2] и раскрывает многовариантность педагогического взаимодействия.

Выделяют семь механизмов обучения: «усвоение», «действие», «открытие», «переживание», «внушение», «игра», «общение», каждый из которых имеет свои дидактический концепт-основание и модель-предписание. Дидактические концепты-основания выступают в качестве источников научного обоснования механизмов обучения, определяющих сущностные аспекты данного способа организации педагогического взаимодействия. Моделипредписания регламентируют технологический сценарий учебного занятия, определяя его дидактическую структуру, выбор используемых методов и средств обучения. Кроме того, механизмы обучения задают палитру ролевых позиций педагога и обучающихся в учебном процессе. При этом каждый из механизмов обучения имеет границы применимости, определяемые его возможностями и ограничениями.

Следует отметить, что логика проведённого мастер-класса, концепция которого предполагала поэтапное обучение педагогов деятельности по созданию логикосмысловых моделей, соответствовала механизму обучения «действие» и выстраивалась в соответствии с инструментальной моделью-предписанием².

В общих чертах мастер-класс представлял собой работу его участников в группах, которая предполагала изучение механизма обучения и заполнение шаблона одной из координат общей для всех логикосмысловой модели по теме «Механизмы обучения». Шаблон координаты представлен на рисунке 2.

После совместной работы представители от каждой группы выступали с обобщениями и размещали заполненные шаблоны координат на магнитной доске. Результатом совместной работы явилась логикосмысловая модель по теме «Механизмы обучения», представленная на рисунке 3.

Более подробное описание мастеркласса представлено в технологической карте (табл.).

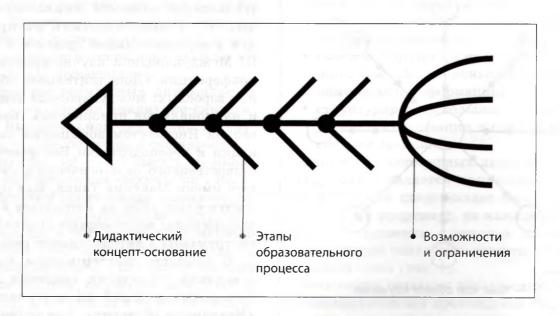


Рисунок 2 — Шаблон координаты логико-смысловой модели по теме «Механизмы обучения»

 $^{^2}$ *Цыркун, И. И.* Система инновационной подготовки специалистов гуманитарной сферы / И. И. Цыркун. — Минск : Тэхналогія, 2000. — 326 с.

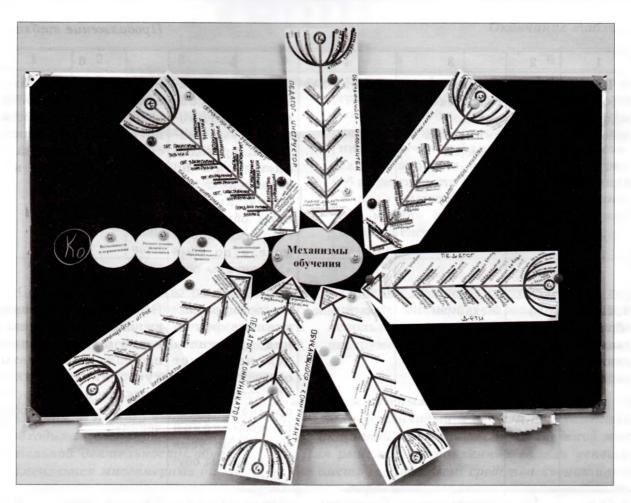


Рисунок 3 — Логико-смысловая модель по теме «Механизмы обучения»

Таблица — Технологическая карта мастер-класса по теме «Как не потеряться в потоке информации: многомерные дидактические инструменты в интерактивном режиме»

Дидак- тическая структура мастер- класса	Время	Содержание	Форма организации деятельности участников	Деятельность ведущего мастер-класса	Деятельность участников мастер-класса
1	2	3	4	5	6
1. Моти- вацион- ный этап	5 минут	Многомерные дидактиче- ские инстру- менты как эффективное средство решения проблемы систематизации знаний обучающихся	Фронтальная	Обозначает актуальность проблемы систематизации знаний обучающихся, раскрывает возможности многомерных дидактических инструментов в решении данной проблемы	Слушают, изучают слайды мультимедий- ной презентации

Продолжение таблицы

1	2	3	4	5	6
2. По- строение модели действия	5 минут	Технология создания логико- смысловых моделей	Фронтальная	Раскрывает тех- нологию соз- дания логико- смысловых мо- делей, проводит инструктаж по заполнению ша- блона коорди- наты общей ло- гико-смысловой модели по теме «Механизмы обу- чения»	Слушают, усваивают последовательность операций деятельности по созданию логикосмысловых моделей и работе с шаблоном координаты
3. Показ образцов выпол- ненного действия	5 минут	Механизм обучения «усвоение»	Фронтальная	На примере ме- ханизма обуче- ния «усвоение» демонстрирует образец заполне- ния шаблона ко- ординаты логи- ко-смысловой модели по теме «Механизмы обу- чения»	Наблюдают за образцом выполненной деятельности по заполнению шаблона координаты «усвоение» логикосмысловой модели по теме «Механизмы обучения»
4. Вы- полнение деятель- ности по образцу	15 минут	Механизмы обучения «действие», «открытие», «переживание», «внушение», «общение»	Групповая	При необходимости консультирует участников мастер-класса	Каждая группа само- стоятельно работает с одним механизмом обучения. Участники изучают материалы, заполняют шаблоны за- данной координаты об- щей логико-смысловой модели по теме «Меха- низмы обучения»
5. Демон- страция выпол- ненной деятель- ности	25 минут	Механизмы обучения «действие», «открытие», «переживание», «внушение», «общение»	Индиви- дуально- фронтальная	При необходимости комментирует и дополняет ответы участников	Представители каждой группы по очереди презентуют результаты работы группы, знакомят других участников с механизмами обучения, размещают заполненные шаблоны координат на магнитной доске, тем самым создавая общую логикосмысловую модель по теме «Механизмы обучения»

Окончание таблицы

1	2	3	4	5	6
6. Подведение итогов	5 минут	Механиз- мы обуче- ния, анализ эффектив- ности логико- смысловой модели как средства си- стематизации знаний обу- чающихся	Фронтальная	ке каждого механизма обучения,	лученную в результате совместной работы логико-смысловую модель по теме «Механизмы обучения», рассуждают о границах

Следует отметить, что по результатам проделанной на мастер-классе работы его участники высказались об эффективности использования логико-смысловых моделей

в решении проблемы систематизации знаний обучающихся и выразили готовность использовать многомерные дидактические инструменты в образовательном процессе.

Системность знаний обучающихся является важным показателем качества образования. Для того чтобы знания приобретали устойчивый и системный характер, необходима целенаправленная организация активной аналитико-синтетической мыслительной деятельности обучающихся. Для решения поставленной задачи успешно применяются многомерные дидактические инструменты. Эти средства когнитивной визуализации знаний позволяют обучающимся дифференцировать и структурировать большие объёмы материала, создавая осмысленные наглядные модели учебной информации.

