КОНТРОЛЬНЫЙ ЭКЗЕМПЛЯР

Учреждение образования «Белорусский государственный педагогический университет имени Максима Танка»

УТВЕРЖДАЮ

Проректор по учебной работе

В.М. Зеленкевич

2018 г.

Регистрационный № УД -2 y-1 1/28 / уч

МЕТОДЫ ИЗОБРАЖЕНИЯ ФИГУР И ОСНОВАНИЯ ГЕОМЕТРИИ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности: 1-02 05 01 Математика и информатика

Учебная программа составлена на основе Образовательного стандарта высшего образования первая ступень специальность 1-02 05 01 Математика и информатика (ОСВО 1-02 05 01 — 2013) и Учебного плана специальности 1-02 05 01 Математика и информатика (регистрационный № 152 — 2013/у от 25. 07. 2013 г.)

составитель:

Н.В. Гриб, доцент кафедры математики и методики преподавания математики учреждения образования «Белорусский государственный педагогический университет имени Максима Танка», кандидат педагогических наук, доцент

РЕЦЕНЗЕНТЫ:

Т.С.Мардвилко, доцент кафедры теории функций Белорусского государственного университета, кандидат физико-математических наук, доцент; С.И.Зенько, доцент кафедры информатики и методики преподавания информатики физико-математического факультета учреждения образования «Белорусский государственный педагогический университет имени Максима Танка», кандидат педагогических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой математики и методики преподавания математики (протокол №13 от 29.05.2018 г.)

Заведующий кафедрой Ууло И.Н.Гуло

Научно-методическим советом учреждения образования «Белорусский государственный педагогический университет имени Максима Танка» (протокол №5 от 19.06.2018 г.)

Оформление учебной программы и сопровождающих её материалов действующим требованиям Министерства образования Республики Беларусь соответствует

Методист учебно-методического

отдела БГПУ

С.А.Стародуб

Ответственный за редакцию: Н.В. Гриб Ответственный за выпуск: Н.В. Гриб

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Актуальность изучения учебной дисциплины «Методы изображений фигур и основания геометрии»

Учебная дисциплина начинается с краткого изложения основных принципов построения изображений плоских и пространственных фигур в педагогической практике. Эта часть учебной дисциплины имеет очевидную профессиональную направленность.

При изучении геометрии в средней школе применяется аксиоматический метод изложения, выработанный еще в древней Греции. Открытие в 19 веке геометрии Лобачевского привело к пересмотру прежних геометрических представлений и перестройке всей системы взглядов на математику в целом. Аксиоматический метод стал привычным инструментом во всех ее областях. Поэтому овладение современными общими идеями построения математической науки и знакомство с геометрией Лобачевского, породившей эти идеи, является важным элементом образования учителя математики.

Учебная дисциплина преподается на 2-м курсе в 4-м семестре. Содержание программы рассчитано на межпредметную взаимосвязь как с ранее изученной учебной дисциплиной «Аналитическая геометрия и преобразования плоскости», так и с изучаемой параллельно дисциплиной «Алгебра».

Полученные знания при изучении данной дисциплины дают возможность будущему учителю грамотно преподавать геометрию в средней школе и вести факультативные занятия по геометрии в старших классах.

Цели и задачи учебной дисциплины

Программа составлена в соответствии с требованиями образовательного стандарта высшего образования по специальности 1-02 05 01 Математика и информатика.

Целями учебной дисциплины являются:

- ознакомление студентов с основными свойствами параллельного проектирования и их использованием в педагогической практике;
- ознакомление студентов с современным пониманием аксиоматического метода в математике и рассмотрение евклидовой геометрии с точки зрения теории математических структур.

Задачей учебной дисциплины является подготовка высококвалифицированного преподавателя геометрии, способного обучать учащихся средней школы на высоком научном и методическом уровне.

Требования к академическим компетенциям

Студент должен:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-2. Владеть методами научно-педагогического исследования.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.

- АК-5. Быть способным порождать новые идеи (обладать креативностью).
 - АК-6. Владеть междисциплинарным подходом при решении проблем.
- АК-7. Иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером.
 - АК-8. Обладать навыками устной и письменной коммуникации.
- АК-9. Уметь учиться, повышать свою квалификацию в течение всей жизни.

Требования к социально-личностным компетенциям

Студент должен:

- СЛК-3. Обладать способностью к межличностным коммуникациям.
- СЛК-5. Быть способным к критике и самокритике.
- СЛК-6. Уметь работать в команде.

Требования к профессиональным компетенциям

Студент должен быть способен:

Обучающая деятельность

- ПК-1. Управлять учебно-познавательной и (учебно-исследовательской деятельностью
- обучающихся.
- ПК-2. Использовать оптимальные методы, формы и средства обучения.
- ПК-3. Организовывать и проводить учебные занятия различных видов и форм.
 - ПК-4. Организовывать самостоятельную работу обучающихся.

Ценностно-ориентационная деятельность

-ПК-17. Осуществлять профессиональное самообразование и самовоспитание с целью совершенствования профессиональной деятельности.

Требования к уровню усвоения содержания учебной дисциплины

Требования к уровню усвоения содержания учебной дисциплины определены образовательным стандартом высшего педагогического образования первой ступени по циклу общепрофессиональных и специальных дисциплин, в котором указаны общенаучные умения, система предметных знаний и комплекс предметных умений.

В результате изучения учебной дисциплины студент должен знать:

- правила изображения плоских и пространственных фигур при параллельном проектировании;
 - суть аксиоматического метода в геометрии;
- сущность аксиоматического построения евклидовой геометрии по Гильберту и по Вейлю;
- основные понятия геометрии Лобачевского и ее связь с проблемой пятого постулата Евклида.

В результате изучения учебной дисциплины студент должен:

знать:

- правила изображения плоских и пространственных фигур при параллельном проектировании;
 - суть аксиоматического метода в геометрии;
- сущность аксиоматического построения евклидовой геометрии по Гильберту и по Вейлю;
- основные понятия геометрии Лобачевского и ее связь с проблемой пятого постулата Евклида;

уметь:

- строить изображения плоских и пространственных фигур в параллельной проекции;
- применять теорему Польке-Шварца при построении изображений многогранников;
 - строить сечения многогранников плоскостью;
- излагать схему обоснования непротиворечивости системы аксиом Вейля евклидовой геометрии;
- излагать схему обоснования непротиворечивости геометрии Лобачевского;

владеть:

- методом параллельного проектирования при изображении фигур с заданными свойствами;
 - методами построения арифметической модели данной системы аксиом.

Для освоения данной учебной дисциплины предусмотрены следующие формы работы: лекции, практические занятия, самостоятельное изучение материала. На лекциях излагается теоретический материал учебной дисциплины. Основная цель практических занятий заключается в применении теоретических знаний содержания лекций, дополнительных источников для коррекции и контроля знаний по школьной математике.

Самостоятельная работа студентов подразумевает изучение основной и дополнительной литературы по предмету, участие в творческих проектах, позволяющих выявить индивидуальную траекторию развития и подготовки к профессиональной деятельности.

- Промежуточный **контроль знаний** осуществляется посредством тестовых заданий, диагностических работ, контрольных работ, отчетов по проектам.
- Итоговый контроль экзамен предполагает ответы на теоретические вопросы и выполнение практического задания.
- Информационно-методическая часть учебной программы включает список основной и дополнительной литературы, методические рекомендации по организации самостоятельной работы студентов, перечень используемых средств диагностики результатов учебной деятельности.

Согласно учебному плану на изучение дисциплины «Методы изображений фигур и основания геометрии» отводится:

дневное отделение (2 курс, 4 семестр) -158 часов, из них аудиторных -70 (лекции -34 часа, практические занятия -36 часов), форма контроля - экзамен;

заочное отделение (3 курс) -158 часов, из них аудиторных -18 (лекции -8 часов, практические занятия -10 часов), форма контроля - экзамен (на 4-м курсе).

Рейтинговые контрольные работы проводятся по следующим темам:

№1: тема 1 «Методы изображений фигур» (построение плоских и пространственных фигур в параллельной проекции), №2: тема 1 «Методы изображений фигур» (построение сечений пространственных фигур), №3: тема 3 «Общие вопросы аксиоматики. Системы аксиом Гильберта и Вейля».

Организация самостоятельной работы студентов

На самостоятельную работу студентов отведено 52 часа: тема 1-22 часа, тема 2-4 часа, тема 3-16 часов, тема 4-10 часов.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Методы изображений фигур

1.1 Изображение плоских фигур в параллельной проекции

Центральное и параллельное проектирование фигуры на плоскость. Свойства параллельного проектирования. Изображение плоских фигур в параллельной проекции.

1.2 Изображение пространственных фигур в параллельной проекции

Теорема Польке-Шварца. Изображение пространственных фигур в параллельной проекции. Изображения многогранников, цилиндра, конуса и шара.

1.3 Аксонометрия. Позиционные и метрические задачи

Метод аксонометрического проектирования. Основная теорема аксонометрии.

Позиционные задачи. Полные и неполные изображения. Метрические задачи. Метрически определенные изображения.

Тема 2. Исторический обзор развития геометрии

2.1 Геометрия до Евклида. «Начала» Евклида

Возникновение и развитие геометрии до Евклида. «Начала» Евклида. Аксиоматический метод в геометрии. Критика системы Евклида.

2.2 Проблема пятого постулата Евклида. Утверждения, эквивалентные пятому постулату

Пятый постулат Евклида. Попытки доказательства пятого постулата. Утверждения, эквивалентные пятому постулату. Пятый постулат и сумма внутренних углов треугольника. Теоремы Саккери-Лежандра.

Тема 3. Общие вопросы аксиоматики. Системы аксиом Гильберта и Вейля

3.1 Модель системы аксиом. Непротиворечивость, независимость и полнота системы аксиом

Интерпретация (модель) системы аксиом. Изоморфизм моделей. Арифметическая модель системы аксиом. Непротиворечивость, независимость и полнота системы аксиом.

3.2 Система аксиом Гильберта евклидовой геометрии

Основные объекты и основные отношения системы аксиом Гильберта. Группы аксиом 1-5. Об аксиомах школьного курса геометрии.

3.3 Система аксиом Вейля трехмерного евклидова пространства. Непротиворечивость аксиоматики Вейля

Основные объекты и основные отношения системы аксиом Вейля. Группы аксиом 1-5. Эквивалентность систем аксиом Гильберта и Вейля. Непротиворечивость и полнота системы аксиом Вейля.

Тема 4. Геометрия Лобачевского

4.1 Абсолютная геометрия. Аксиома Лобачевского. Непротиворечивость геометрии Лобачевского

Основные факты абсолютной геометрии. Аксиома параллельности и ее отрицание. Аксиома Лобачевского. Геометрия Лобачевского и ее непротиворечивость. Независимость пятого постулата Евклида от аксиом абсолютной геометрии.

4.2 Параллельность прямых по Лобачевскому. Свойства параллельных прямых. Угол параллельности. Формула Лобачевского. Сверхпараллельные прямые.

Параллельные и сверхпараллельные прямые на плоскости Лобачевского и их свойства. Угол параллельности. Функция Лобачевского и ее свойства. Следствия из формулы Лобачевского.

4.3 Треугольники и четырехугольники на плоскости Лобачевского. Окружность, эквидистанта и орицикл.

Сумма углов треугольника и четырехугольника на плоскости Лобачевского. Признак равенства треугольников по трем углам.

Эллиптические, параболические и гиперболические пучки прямых на плоскости Лобачевского. Окружность, орицикл, эквидистанта и их свойства.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(дневная форма получения образования)

	(Диевий форм									
		Кол	ичество		ЭНЫХ	E.	Я			
			час	ОВ		НТ	бия			
Номер раздела, темы, занятия	Название раздела, темы, занятия; перечень изучаемых вопросов	лекции	практические (семинарские) занятия	управляемая (контролируемая)	самостоятельная работа студента	самостоятельная работа студента	Материальное обеспечение занятия (наглядные, методические пособия др.)		троля	
Номер разд			du (95)	лекции	практика	самостоя	Материальн (наглядные др.)	Литература	Формы контроля знаний	
1	2	3	4	5	6	7	8	9	10	
			4 cem	естр						
1	Методы изображений фигур (40ч.) (4 семестр)	10	30	2		22				
1.1	Центральное и параллельное проектирование фигуры на плоскость. Свойства параллельного проектирования. Изображение плоских фигур в параллельной проекции	2				6	Опорный кон- спект. УМК	[1], [5], [3]	Устный рос	ОП-
	Свойства параллельного проектирования. Аффинное отображение плоскости на плоскость		2				Опорный кон- спект. УМК		Устный рос	ОП-
	Изображение плоских многоугольников в параллельной проекции		2				Зад. для самост. работ		Самостоя тельная	- pa-

							бота
	Изображение окружности в параллельной проекции. Сопряженные диаметры эллипса		2		Тесты		Тест
1.2	Изображение пространственных фигур в параллельной проекции. Теорема Польке—Шварца. Изображения куба, параллелепипеда, призмы и пирамиды	2	2	8	Зад. для самост. работ	[1], [5], [2], [3]	Самостоя- тельная ра- бота
	Изображения цилиндра, конуса и шара	2			Тесты	[1], [5], [2], [3]	Тест
	Изображения цилиндра, конуса и связанных с ними многогранников		2		Зад. для самост. работ		Самостоя- тельная ра- бота
	Изображения шара и связанных с ним многогранников		2		Тесты		Тест
	Изображения шара и связанных с ним цилиндров и конусов		2		Тесты		Устный оп- рос
	Изображение плоских и пространственных фигур в параллельной проекции		2				Рейтинговая работа №1
1.3	Метод аксонометрического проектирования. Основная теорема аксонометрии. Позиционные задачи. Полные и неполные изображения	2		10	Зад. для рейт. работ. УМК	[1], [2], [3]	
	Сечение призмы плоскостью, заданной тремя точками		2		Зад. для самост. работ		Устный опрос

	Сечение цилиндра плоскостью, заданной тремя точками		2			Зад. для самост. работ		Самостоя- тельная ра- бота
	Сечение пирамиды плоскостью, заданной тремя точками		2			Опорный кон- спект. УМК		Тест
	Сечение конуса плоскостью, заданной тремя точками		2			Зад. для самост. работ		Самостоя- тельная ра- бота
	Построение сечений призмы и цилиндра методом следов		2			Зад. для самост. работ		Самостоя- тельная ра- бота
	Построение сечений пирамиды и конуса методом следов		2			Тесты		Тест
	Метрические задачи. Метрически определенные изображения	2		2		Опорный кон- спект. УМК	[1], [2], [3]	Устный оп- рос
	Метрические задачи, связанные с кубом и правильной 4-угольной пирамидой		2			Зад. для самост. работ		Устный оп- рос
	Построение сечений пространственных фигур		2					Рейтинговая работа №2
2	Исторический обзор развития геометрии (4ч.)	4			4			
2.1	Возникновение и развитие геометрии до Евклида. «Начала» Евклида. Аксиоматический метод в геометрии. Критика системы Евклида	1			2	Опорный кон- спект.	[1], [6]	Устный опрос

2.2	Пятый постулат Евклида. Попытки доказательства пятого постулата. Утверждения, эквивалентные пятому постулату. Пятый постулат и сумма внутренних углов треугольника. Теоремы Саккери-Лежандра	3			2	Опорный конспект.	[1], [6]	Устный оп- рос
3	Общие вопросы аксиоматики. Системы аксиом Гильберта и Вейля (16ч.)	10	6	2	16			
3.1	Интерпретация (модель) системы аксиом. Изоморфизм моделей. Арифметическая модель системы аксиом. Непротиворечивость системы аксиом	2	2		5	Опорный кон- спект. УМК	[1], [2], [4]	Устный оп- рос
	Независимость и полнота системы аксиом	2		2		Зад. для самост. работ	[1], [2], [4]	Самостоя- тельная ра- бота
	Понятие независимости системы аксиом на примерах, связанных с аксиоматикой Вейля		2			Тесты		Тест
	Понятие полноты системы аксиом на примерах, связанных с аксиоматикой Вейля		2			Зад. для рейт. работ. УМК		Рейтинговая работа №3
3.2	Система аксиом Гильберта евклидовой геометрии. Основные объекты и основные отношения системы аксиом Гильберта. Группы аксиом 1-5. Об аксиомах школьного курса геометрии	2			6	Опорный кон- спект. УМК	[1], [4], [8]	Устный оп- рос

3.3	Система аксиом Вейля трехмерного евклидова пространства. Основные объекты и основные отношения системы аксиом Вейля. Группы аксиом 1-5	2	5	Опорный кон- спект. УМК	[1], [4], [10]	Устный опрос
	Эквивалентность систем аксиом Гильберта и Вейля. Непротиворечивость и полнота системы аксиом Вейля	2		Опорный кон- спект. УМК	[1], [4], [9]	Устный оп- рос
4	Геометрия Лобачевского (10ч.)	10	10			
4.1	Основные факты абсолютной геометрии. Аксиома параллельности и ее отрицание. Аксиома Лобачевского. Геометрия Лобачевского и ее непротиворечивость. Независимость пятого постулата Евклида от аксиом абсолютной геометрии	2	4	Опорный кон- спект. УМК	[1], [6], [8]	Устный оп- рос
4.2	Параллельные и сверхпараллельные прямые на плоскости Лобачевского и их свойства	2	3	Опорный кон- спект. УМК	[1], [6], [8]	
	Угол параллельности. Функция Лобачевского и ее свойства. Следствия из формулы Лобачевского	2		Зад. для самост. работ	[1], [4], [6]	Самостоя- тельная ра- бота
4.3	Сумма углов треугольника и четырехугольника на плоскости Лобачевского. Признак равенства треугольников по трем углам	2	4	Тесты	[1], [4], [6]	Тест
	Эллиптические, параболические и гиперболические пучки прямых на плоскости Лоба-	2		Опорный кон- спект. УМК	[1], [7], [9]	Устный оп-

чевского. Окружность, орицикл, эквидистанта							poc
и их свойства							
Всего	32	34	2	2	52		Экзамен

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(заочная форма получения образования)

	(3αυ παπ ψυρικ		· ·			ı	
3a-		Колі	ичество аз часо	удиторных ов	Ie- ЯД- IO-		
Номер раздела, темы, за- нятия	Название раздела, темы, занятия; перечень изучаемых вопросов	лекции	практические (семинарские) занятия	управляемая (контролируемая) самостоятельная работа студента	Материальное обеспечение занятия (наглядные, методические пособия и др.)	Литература	Формы контроля знаний
1	2	3	4	5	6	7	8
		,	4 семест	гр			
1	Методы изображений фигур (11ч.)	3	8				
1.1	Центральное и параллельное проектирование фигуры на плоскость. Свойства параллельного проектирования. Изображение плоских фигур в параллельной проекции	1	2		Опорный конспект. УМК	[1], [5], [3]	Устный опрос
1.2	Изображение пространственных фигур в параллельной проекции. Теорема Польке—Шварца. Изображения куба, призмы, пирамиды. Изображения цилиндра, конуса и шара	1	3		Опорный конспект. УМК	[1], [5], [2], [3]	Самостоятель- ная работа

1.3	Метод аксонометрического проектирования. Основная теорема аксонометрии. Позиционные задачи. Полные и неполные изображения	1		Опорный конспект. УМК	[1], [2], [3]	Тест
1.4	Сечения многогранников		3	Опорный конспект. УМК		Самостоятельная работа
2	Основания геометрии (7ч.)	5	2			
2.1	«Начала» Евклида. Аксиоматический метод в геометрии. Проблема пятого постулата Евклида. Система аксиом Гильберта евклидовой геометрии	1		Опорный конспект. УМК	[1], [6], [8]	Устный опрос
2.2	Система аксиом Вейля трехмерного евклидова пространства	1		Опорный конспект. УМК	[1], [4], [10]	Устный опрос
2.3	Понятия непротиворечивости, независимости и полноты системы аксиом	1	2	Опорный конспект. УМК	[1], [2], [4]	Тест
2.4	Аксиома Лобачевского. Геометрия Лобачевского. Параллельные прямые по Лобачевскому. Сверхпараллельные прямые. Взаимное расположение двух прямых на плоскости Лобачевского	1		Опорный конспект. УМК	[1], [6], [8]	Самостоятель- ная работа

2.5	Непротиворечивость геометрии Лобачевского. Модель Клейна плоскости Лобачевского. Решение проблемы пятого постулата	1		Опорный конспект. УМК	[1], [6], [8]	Устный опрос
	Всего	8	10			Экзамен

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Атанасян Л.С. Геометрия: часть 2 / Л.С. Атанасян, В.Т. Базылев. М.: Просвещение, 1987. 352 с.
- 2. Базылев В.Т. Сборник задач по геометрии / В.Т. Базылев, К.И. Дуничев и др. М.: Просвещение, 1980. 238 с.
- 3. Атанасян Л.С. Сборник задач по геометрии / Л.С. Атанасян, М.В. Васильева и др. М.: Просвещение, 1975. 176 с.
- 4. Жафяров А.Ж. Геометрия: часть 2 / А.Ж. Жафяров. Новосибирск: Сибирское университетское издательство, 2002. 267 с.

Дополнительная литература

- 5. Четверухин Н.Ф. Изображения фигур в курсе геометрии / Н.Ф. Четверухин. М.: Учпедгиз, 1958. 216 с.
- 6. Кутузов Б.В. Геометрия Лобачевского и элементы оснований геометрии / Б.В. Кутузов. М.: Учпедгиз, 1955. 152 с.
- 7. Трайнин Я.Л. Основания геометрии / Я.Л. Трайнин. М.: Учпедгиз, 1961. 326 с.
- 8. Погорелов А.В. Основания геометрии / А.В. Погорелов М.: Наука, 1968. 151 с.
- 9. Ефимов Н.В. Высшая геометрия / Н.В. Ефимов. М.: Наука, 1978. 580 с.
- 10. Егоров И.П. Основания геометрии / И.П. Егоров. М.: Просвещение, 1984. 144 с.

Материалы на электронных носителях (локальная сеть математического факультета, кафедральный компьютер, личный кабинет преподавателя, репозиторий):

- 1. Вопросы к экзамену.
- 2. УМК по дисциплине «Методы изображений фигур и основания геометрии».

Методические рекомендации по организации управляемой самостоятельной работы

В принципе каждая тема программы позволяет организовать творческую самостоятельную работу студентов, которая будет содействовать становлению преподавателя-исследователя, владеющего значительным творческим потенциалом.

Кафедра рекомендует следующие темы для организации самостоятельной работы студентов:

- 1) доказательство условия полноты изображения;
- 2) доказательство условия метрической определенности изображения;
- 3) доказательства эквивалентности пятого постулата Евклида другим утверждениям евклидовой геометрии;
 - 4) доказательства теорем Саккери Лежандра.

Контроль за самостоятельной работой студентов предполагается проводить на еженедельных консультациях и экзаменах.

Особое внимание необходимо обращать на организацию индивидуальной работы студентов под руководством преподавателя. Рекомендуется разработка системы индивидуальных заданий, которые студент должен выполнить на основе образцов, рассмотренных на лекциях и практических занятиях.

Требования к выполнению самостоятельной работы студента

№ п/ п	Название темы, раздела	Кол- во ча- сов на СРС	Задание	Форма выполнения
1	2	3	4	5
	2 курс (4 семестр)	52		
1	Методы изображений фи-	22		
	гур			
1.1	Центральное и параллельное	6	[1, стр. 92–100]	Доказательство
	проектирование фигуры на		[5, стр. 23–30]	теорем (в пись-
	плоскость. Свойства парал-		[2, №1356–1371,	менном виде).
	лельного проектирования.		1378, 1379]	Письменный
	Изображение плоских фигур		[3, №741–752]	отчет с реше-
	в параллельной проекции			ниями не менее
				10 задач.
1.2	Изображение пространст-	8	[1, стр. 101–110]	Доказательство
	венных фигур в параллель-		[2, №1380–1384,	теорем (в пись-
	ной проекции. Теорема		1386–1389]	менном виде).
	Польке-Шварца. Изображе-		[3, №810–821]	Письменный
	ния куба, параллелепипеда,			отчет с реше-
	призмы и пирамиды. Изо-			ниями не менее
	бражения цилиндра, конуса			10 задач.
	и шара.			
1.3	Метод аксонометрического	10	[1, стр. 111–130]	Доказательство
	проектирования. Основная		[5, стр. 51–69]	теорем (в пись-
	теорема аксонометрии. По-		[2, №1390–1393,	менном виде).
	зиционные задачи. Полные		1399–1402, 1426–	Письменный
	и неполные изображения		1431, 1433–1440]	отчет с реше-
	-		[3, №794–797, 799–	ниями не менее

			801]	10 задач.
2	Исторический обзор раз- вития геометрии	4		
2.1	Возникновение и развитие геометрии до Евклида. «Начала» Евклида. Аксиоматический метод в геометрии. Критика системы Евклида	2	[1, стр. 242–246] [8, стр. 10–15]	Доказательство теорем (в письменном виде).
2.2	Пятый постулат Евклида. Попытки доказательства пятого постулата. Утверждения, эквивалентные пятому постулату. Пятый постулат и сумма внутренних углов треугольника. Теоремы Саккери-Лежандра	2	[1, стр. 247–250] [6, стр. 9–13, 16– 25]	Доказательство теорем (в письменном виде).
3	Общие вопросы аксиоматики. Системы аксиом	16		
	Гильберта и Вейля	i .		
3.1	Интерпретация (модель) системы аксиом. Изоморфизм моделей. Арифметическая модель системы аксиом. Непротиворечивость системы аксиом. Независимость и полнота системы аксиом.	5	[1, ctp. 280–284] [6, ctp. 119–125] [2, №1471,1474, 1476] [3, №843,844, 850]	Доказательство теорем (в письменном виде). Письменный отчет с решениями не менее 3 задач.
3.1	Интерпретация (модель) системы аксиом. Изоморфизм моделей. Арифметическая модель системы аксиом. Непротиворечивость системы аксиом. Независимость и полнота систе-	6	[6, стр. 119–125] [2, №1471,1474, 1476]	теорем (в письменном виде). Письменный отчет с решениями не менее

	странства. Основные объекты и основные отношения системы аксиом Вейля. Группы аксиом 1-5		1491, 1492, 1494, 1497] [3, №856–860]	менном виде). Письменный отчет с реше- ниями не менее 5 задач.
4	Геометрия Лобачевского	10		
4.1	Основные факты абсолютной геометрии. Аксиома параллельности и ее отрицание. Аксиома Лобачевского. Геометрия Лобачевского и ее непротиворечивость. Независимость пятого постулата Евклида от аксиом абсолютной геометрии	4	[1, стр. 259–266, 284–288] [6, стр. 94–98] [8, стр. 73–76]	Доказательство теорем (в письменном виде).
4.2	Параллельные и сверхпараллельные прямые на плоскости Лобачевского и их свойства. Угол параллельности. Функция Лобачевского и ее свойства. Следствия из формулы Лобачевского	3	[1, стр. 266–270] [6, стр. 39–54]	Доказательство теорем (в письменном виде).
4.3	Сумма углов треугольника и четырехугольника на плоскости Лобачевского. Признак равенства треугольников по трем углам. Эллиптические, параболические и гиперболические пучки прямых на плоскости Лобачевского. Окружность, орицикл, эквидистанта и их свойства.	4	[1, стр. 264–266, 270–274] [6, стр. 30–36]	Доказательство теорем (в письменном виде).
	Всего	52		

Примерный перечень заданий управляемой самостоятельной работы студента

Модуль 1: Сформулировать определение полной задачи, метрической задачи, метрически определенного изображения. Представить письменный отчет с решениями не менее 5 метрических задач.

Сформулировать определение независимой и полной системы аксиом. Представить письменный отчет с решениями не менее 4 задач на доказательство независимости и полноты системы аксиом.

Модуль 2: Сформулировать определение полной задачи, метрической задачи, метрически определенного изображения, критерий метрически определенного изображения плоской фигуры. Представить письменный отчет с решениями не менее 8 метрических задач.

Сформулировать определение независимой и полной системы аксиом, критерий независимости и полноты системы аксиом. Представить письменный отчет с решениями не менее 6 задач на доказательство независимости и полноты системы аксиом.

Модуль 3: Сформулировать определение полной задачи, метрической задачи, метрически определенного изображения, критерий метрически определенного изображения плоской и пространственной фигуры. Представить письменный отчет с решениями не менее 10 метрических задач.

Сформулировать определение независимой и полной системы аксиом, сформулировать и доказать критерий независимости и полноты системы аксиом. Представить письменный отчет с решениями не менее 8 задач на доказательство независимости и полноты системы аксиом.

Перечень рекомендуемых средств диагностики

Тестовые задания по темам. Устные фронтальные опросы. Самостоятельные работы. Контрольные работы. Письменные отчеты по аудиторным (домашним) практическим упражнениям.