Serge Bogdanovich

Minsk, Belarus

email: bogdanovich@bspu.unibel.by

Remarks on hyperHermitian manifolds

We consider an almost hyperHermitian structure (ahHs) on a manifold M consisting of (J_1, J_2, J_3, g) , where $J_i^2 = -I$, $J_1J_2 = -J_2J_1 = J_3$, $g(J_iX, J_iY) = g(X, Y)$, $i=1,2,3, X,Y\in\chi(M)$. If ∇ is the Riemannian connection of the Riemannian metric g, then the canonical connection $\overline{\nabla}$ in the sense of [1] of the ahHs has the following form

$$\overline{\nabla}_X Y = \frac{1}{4} \left(\nabla_X Y - J_1 \nabla_X J_1 Y - J_2 \nabla_X J_2 Y - J_3 \nabla_X J_3 Y \right), \quad X, Y \in \chi(M).$$

In particular, $\overline{\nabla}g = 0$, $\overline{\nabla}J_i = 0$, i = 1, 2, 3.

particular, $\nabla g = 0$, $\nabla J_i = 0$, i = 1, 2, 3. The tensor field $h = \nabla - \overline{\nabla}$ is called the second fundamental tensor field of ahHs, |1|.

Using results in [2] we have got the following

Theorem 1. Let (M, J, g) be an almost Hermitian manifold. Then there exists a neighborhood N_{\triangle} of the diagonal $\triangle(M \times M)$ in $M \times M$ that the manifold N_{\triangle} has an ahHs (an infinite dimensional set of ahHs).

Theorem 2. Let (M,g) be a Riemannian manifold, then there exists a neighborhood N_{\triangle} of the diagonal $\triangle(M \times M \times M \times M)$ in $M \times M \times M \times M$ that the manifold N_{\triangle} has an ahHs (an infinite dimensional set of ahHs).

Theorem 3. There exists such an ahHs (J_1, J_2, J_3, g) that $\nabla J_3 = 0$ and

 $h_XY = \frac{1}{2}g(\xi,X)J_3Y$, where $||\xi|| \neq 0$, $\xi, X, Y \in \chi(M)$. If there exists a solution α of the equation $\xi = \operatorname{grad}\alpha$, then the structures (J_i',g) , i=1,2,3 are Kaehlerian, where the ahHs (J_1',J_2',J_3',g) on M is defined by the following equalities

$$J_1' = \cos \alpha J_1 - \sin \alpha J_2,$$

$$J_2' = \sin \alpha J_1 + \cos \alpha J_2, \quad \alpha \in F(M).$$

$$J_3' = J_3,$$

Theorem 4. Let we have such an ahHs (J_1, J_2, J_3, g) that $\nabla J_3 = 0$ and $h_XY = \frac{1}{2}g(\xi,X)J_3Y$, $L = [\xi]$. The ahHs is quasi homogeneous one, [1], if and only if $\overline{\nabla}\xi=0$ on M. If the ahHs is quasi homogeneous then the distribution L^{\perp} is integrable and its maximal integral manifolds are totally geodesic submanifolds with respect to ∇ .

References

- [1] A. A. Ermolitski, Riemannian manifolds with geometric structures (monograph), Minsk: BSPU, 1998, 195 pp. (in Russian)
- [2] S. A. Bogdanovich, A. A. Ermolitski, On almost hyperHermitian structures on Riemannian manifolds and tangent bundles, Central European Journal of Mathematics (to appear)