ГЕОМЕТРИЯ И ТОПОЛОГИЯ

Председатель секции – профессор И.В. Белько Заместитель председателя секции – Ю.Я. Романовский

ON AN ALMOST HYPERHERMITIAN STRUCTURE ON A LOCALLY K-SYMMETRIC RIEMANNIAN SPACE

S.A. Bogdanovich (BSPU, Minsk)

Definition [1]. A connected Riemannian manifold (M,g) with a family of local isometries $\{s_x : x \in M\}$ is called a locally k-symmetric Riemannian space (k-s.l.R.s.) if the following axioms are fulfilled:

a) $s_x(x) = x$ and x is the isolated fixed point of the local symmetry

 s_x ;
b) the tensor field S: $S_x = (s_{x*s})$ is smooth and invariant under any local isometry s_x ;

c) $S^k = I$ and k is the least of such positive integers.

If M is a k-s.l.R.s. and $X, Y \in \chi(M)$ then the unique canonical connection $\widetilde{\nabla}$ can be defined by the following formula (see [2])

$$\widetilde{\nabla}_X Y = \nabla_X Y - \frac{1}{k} \sum_{j=1}^{k-1} \nabla_X (S^j) Y^{k-j} Y = \frac{1}{k} \sum_{j=0}^{k-1} S^j \nabla_X S^{k-j} Y.$$
 (1)

Further, we have $\widetilde{\nabla}g=\widetilde{\nabla}\widetilde{R}=\widetilde{\nabla}h=\widetilde{\nabla}S=0,\ S(\widetilde{R})=\widetilde{R},\ S(h)=h,\ S(g)=g,$ where $h=\nabla-\widetilde{\nabla}$ and \widetilde{R} is the curvature tensor field of $\widetilde{\nabla}$.

Let M be such a k-s.l.R.s. that $S_x = (s_x)_{*x}$ has only complex eigenvalues $a_1 \pm b_1 i$, ..., $a_r \pm b_r i$. We define distributions D_i , i = 1, ..., r by $D_i = ker(S^2 - 2a_i S + I)$.

Every $X \in \chi(M)$ has the unique decomposition $X = X_1 + ... + X_r$, where $X_i \in D_i$, i = 1, ..., r. An almost complex structure J on M is defined by

$$JX = \sum_{i=1}^{r} \frac{1}{b_i} (S - a_i I) X_i.$$
 (2)

It is proved in [2] that (M, g) is an almost Hermitian structure and the connection $\widetilde{\nabla}$ defined by (1) coincides with the canonical connection $\overline{\nabla}$ of the pair (J, g).

Theorem. Let (J_1, J_2, J_3, g) be such an almost hyperHermitian structure on a k-s.l.R.s. that $J_1 = J$ where J is defined by (2). In this case J_2 and J_3 are not invariant with respect to the family $\{s_x : x \in M\}$ and, therefore, with respect to the corresponding transitive pseudogroup of transformations of (M, g).

References

- [1] Kowalski O. Generalized symmetric space // Lecture Notes in Math. 805. - Springer-Verlag, 1980.
- [2] Ermolitski A.A. Riemannian manifolds with geometric structures. -Minsk: BSPU, 1998.

DEFORMATIONS OF STRUCTURES ON A TUBULAR NEIGHBORHOOD OF A SUBMANIFOLD

A.A. Ermolitski (Minsk)

Let M' be a k-dimensional manifold isometrically embedded in a ndimensional Riemannian manifold (M,g) and $Tb(M';\varepsilon)=\bigcup_{p\in M'}D(p;\varepsilon)$ be the normal tubular neighborhood of the submanifold M' in M. There exist coordinates $x_1,...,x_k$ in some neighborhood $V_0\subset M$ of a point $o \in M'$ and for any point $x \in W_0 = \bigcup_{p \in V_0} D_p$ there exists such unique point $p \in V_0$ that $x = exp_p(t\xi)$, $\|\xi\| = 1, \xi \in T_pM'^{\perp}$. The point $x \in W_0$ has the coordinates $x_1, ..., x_k, x_{k+1}, ..., x_n$ where $x_1, ..., x_k$ are coordinates of the point p in V_0 and $x_{i+1}, ..., x_n$ are normal coordinates of x in D_p . We denote $X_i = \frac{\partial}{\partial x_i}$ $\sqrt{1, n}$, on W_0 .

Let K be a smooth tensor field of type (r,s) on the manifold Mand for $x \in W_0$

and for
$$x \in W_0$$

$$K_x = \sum_{i_1, \dots, i_r, j_1, \dots, j_s} K_{11 \dots, j_s}^{(11 \dots, i_r)}(x) X_{i_{1_x}} \otimes \dots \otimes X_{i_{r_x}} \otimes X_x^{j_1} \otimes \dots \otimes X_x^{j_s},$$

$$K_x = \sum_{i_1, \dots, i_r, j_1, \dots, j_s} K_{11 \dots, j_s}^{(11 \dots, i_r)}(x) X_{i_{1_x}} \otimes \dots \otimes X_{i_{r_x}} \otimes X_x^{j_1} \otimes \dots \otimes X_x^{j_s},$$

where $\{X_x^1,...,X_x^n\}$ is the dual basis of $T_x^*(M)$, $x=exp_p(t\xi)$, $\|\xi\|=1$, $\xi \in T_p M'^{\perp}$.

We consider a tensor field \overline{K} on M

We consider a tensor field
$$X$$
 of X $X_{i_{r_x}} \otimes X_{i_{r_x}} \otimes X_{i$

by the following cases

a) $x \in D(p; \frac{\varepsilon}{2}), z = p;$ b) $x \in D(p; \varepsilon) \setminus D(p; \frac{\varepsilon}{2}), z = exp_p(2t - \varepsilon)\xi;$

c) $x \in M \setminus Tb(M'; \varepsilon), z = x.$

It is easy to see the independence of the tensor field \overline{K} on a choice of coordinates in W_0 for every point $o \in M'$.

The tensor field \overline{K} is called a deformation of the tensor field K on a tubular neighborhood of the submanifold M'.

The obtained tensor field \overline{K} is continuous but is not smooth on the boundaries of $Tb(M'; \frac{\varepsilon}{2})$ and $Tb(M'; \varepsilon)$, \overline{K} is smooth in other points of M.