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With help of any metric connection ¥V on an almost Hermitian manifold M w
can construct by the defined way an almost Hermitian hypercomplex structure o
the tangent bundle T M. This structure includes two basic anticommutative almos
Hermitian structures for which introduced by the second author the fundament:
tensor fields A! and h? are computed. It allows to consider various classes of almo-
Hermitian hypercomplex structures on 7M.

1. Introduction.

Let (M, J.g) be an almost Hermitian manifold i.e. J? = —I and ¢(JX,JY) =
9(X,Y) for X,Y € x(M), where g is a fixed Riemannian metric on M.

For the Riemannian connection V the canonical connegtidn V of the pair (J, g
(1] is defined by the formula

(1) VxY =3(VxY —JVxJY) = VxY + IV, )W, X,Y € x(M).

The tensor field h = V — V is called the second amental tensor field of the
pair (J,g) [1], in particular, we have Vg = 0, _57_%0 and

(2) hxY = —3Vx(J)JY = 3(VxY + yY),

(3) hxyz = g(hxy, Z) = —hxzy, Q’T,Y € x(M).

The classification given in [3] has be@ itten in terms of the tensor field A in
[1]-

Further, an almost Hermitian h; omplex structure (aHhs) consists of (J, Ja2, Ja
where J2 = =1, J1Jo, = —JoJ , 9(LX, LY) = g(X,Y), 1 = 1,2,3. For anv
Riemannian metric g such a @10 g can be defined by the formula

9(X,Y) = £ (g ) + 9(N X, 1Y) +9( X, oY) +g(J3X, J3Y)).

_ If Visthe Rjemagan connection of the metric g then the canonical connection
V of the aHhs has the following form

(4) VxY = 2 (VxY = hVx\Y — J,Vx Y — J3VxJ3Y)

and Vg=0,VJ,=0fori=1,2,3.

Proposition. Let (M, J,,g) be a Kaehlerian structure i.e. VJ; = 0 on M
then the connection given by (4) coincides with those defined by (1) for (M, .Ja,q)
and (M, J3, g). In particular, the second fundamental tensor fields of (M, Jy,q) and
(M, J3, g) are the same. :

Proof follow from (4) and (1) with help of condition VJ; = 0.

Theorem. A wector field X is an infinitesimal isometry and an affine transfor-
mation with respect to V defined by (4) if and only if Lxg =0 and Lxh =0, whe
h =YV -V, L is the Lie differentiation with respect Lo X.

2. Hypercomplex structures on tangent bundles.
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Let (M, J, g) be an almost Hermitian manifold and TM be its tangent bundle.

For a metric connection V (Vg = O) we consider the connection map K of ¥ 2],
defined by the formula

UxZ=KZ.X,

where Z is considered as a map from M into TM and we means by the right side
the vector field on M assigning to p € M the vector KZ.X, € M,. f U € TM,
we denote by Hy the kernel of K. i, and this 2n-dimensional subspace of T'My is
called the horizontal subspace of TM,. Let m denote the natural projection of T'M
onto M then =, is a C*®-map of TTM onto TM. If U € TM, we denote by Vy
the kernel of 7,7, and this 2n-dimensional subspace of T My is called the vertical

subspace of T My (dim TMy = 2dim M = 4n). The following maps are isomorphisms
of corresponding vector spaces (p = w(U)).

TuTMy - Huy — M, Kirmy - Vo — M,

and we have TMy = H; 2 V.
If X € x(M) then there exists exactly one vector ﬁequ M called the "hori-
R

zontal lift” (resp. ”vertical lift”) of X and denoted b < resp. X7) such that for
alU e TM: %

J
Xy = Xew),  TXy = Orw); f(@\\bjww» KXYy = Xx()-
Let R be the curvature tensor field of §en following [2] we have

e,y =0, [X%Y] ,%}Y)”, (X", Y*u) = [X,Y),
K ([X Ju)

= R(X,Y)U.
For vector fields X = X% and Y = Y*@Y" on TM the natural Riemannian
metric <, > is defined on by the formula

g,? >=g(m.X,m.Y)+ g(KX,KY).

It 1s clear that the subspaces Hy and Vi, are orthogonal with respect to <, >.
I). We define a tensor field J; on TM by the equalities

hXh =X, LhX'=-X" X ex(M).

It is easy to verify that (T'M, J,, <,>) is an almost Hermitian manifold.

Remark. This construction uses only the Riemannian metric g and does not
depend on the almost complex structure J.

Let h' be the second fundamental tensor field of the pair (J;, <,>), see (2), (3).
We have obtained the following cases for the tensor field h' assuming all the vector
fields to be orthonormal

119 Alayup. =1 (g(VXY, Z) - g(€7xy,2));
21°)  Bhayaz = =1 (9(R(X,Y)Z,U) + g(R(Z, X)V,0));

23



31%) By = -} (9(RZ,X)Y.0) + o(R(X,Y)2,1));
41°)  hloyg = —19(R(Z,Y)X,U);

5.1%) hiyoyoze = 19(R(Z,Y) X, U);

6.1°)  hlo. =0;

A Byeynze =0

819  hluye =1 (9(VxY,2) - 9(VxY, 2)).

Thus, the tensor field h! (class of the structure (J;, <,>)) strongly depends on
the connection V.

IT). We define a tensor field J, on TM assuming

Xt = (X,  hX'=-(JX), X ex(M).

One can verify that (T'M, Ji, Jo, J3 = J1J2, <,>) is an almost Hermitian hyper-
complex manifold.

Let h? be the second fundamental tensor field of the pair (Jo, <,>), see (2), (3).
Assuming all the vector fields to be orthonormal we have go

1.2%) Bliyns = Bxvz:

229 huyz = - (9(B(X,Y)2,0) +g<R<)gQJZ )
82 A= (g(R(x, 2)Y,U) + gSR(

42°) R =1 (g(ﬁ(z,y)x, U (JZ,JY)X, U))
5.2%) R vpuge — 0

6.2°) h%(vwzh =0; C)Q

e

7.2%) hx,,},,,zv = 0;
8.2°)  Kyez =1 (9(V Py - 9(VxJY, 2)).

It is clear that the const of the aHhs on 7'M strongly depends on the
connection V and we ca.n in this vay an infinite dimensional set of aHhs.

Using the remark in the arguments above we have got the following

Theorem. Let e a Riemannian manifold. Then there exists an infinite
dimensional set of a on TT M. This structures can be constructed by the method
above.
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