института имени А.А. Кулешова; профессор кафедры физики твердого тела Белорусского государственного университета, доктор физико-математических наук В.В. Шепелевич

Все права на данное издание защищены. Воспроизведение всей книги или любой ее части не может быть осуществлено без разрешения издательства.
ПРЕДИСЛОВИЕ

Лабораторный практикум по курсу общей физики в учреждениях, обеспечивающих получение высшего образования, является основой подготовки учителя физики, направленной на формирование умений и навыков работы с физическими приборами, овладение методами физических измерений и обработки их результатов, на более глубокое понимание теоретического материала курса и прочное его усвоение.

При написании данного пособия использованы основные дидактические, методические и организационные составляющие системы такой подготовки, сформированной на физическом факультете Белорусского государственного педагогического университета имени Максима Танка в результате коллективной многолетней работы его сотрудников. Среди них необходимо особо отметить работавших в разное время заведующими кафедрой общей физики профессоров В.И. Арабаджи, М.С. Цедрика и доцентов А.С. Микулича, Н.А. Юшкевича; доцентов Г.А. Заборовского, Г.П. Макееву; старших преподавателей Г.А. Загуста, И.Ф. Савицкую; заведующего лабораторией П.В. Грудинского и других сотрудников, которые уделяли большое внимание постановке лабораторных работ и усовершенствованию их содержания и методического обеспечения. При подготовке некоторых работ использованы материалы из различных практикумов и руководств по физике.

Пособие охватывает все разделы курса общей физики. Его содержание, тематика и последовательность лабораторных работ соответствуют типовой учебной программе по физике для высших учебных заведений, составленной в соответствии с образовательным стандартом высшего образования специальности 1-0105-04-00 «Физика». Постановка работ ориентирована на использование типового (в том числе школьного) учебно-лабораторного оборудования. В некоторых работах используются самодельные приспособления и установки, многие из которых могут быть воспроизведены выпускниками при работе в школе. Особое внимание уделяется обработке результатов эксперимента и их анализу, освоению аппарата теории погрешностей. Для этого предусмотрен небольшой вводный практикум по теории погрешностей и обработке результатов измерений (работы 1.1 – 1.3).
Для интенсификации учебного процесса и усиления его обучающей функции при организации лабораторного практикума по курсу общей физики могут быть применены различные технические средства обучения, компьютерная и иная вычислительная техника. Это в сочетании с фронтальным методом выполнения работ позволяет значительно сократить время обработки экспериментального материала, достичь более высокого уровня его усвоения.

Названия и обозначения единиц физических величин, используемых в пособии, соответствуют Международной системе единиц (СИ). Поэтому все приложения, приведенные в конце книги, также соответствуют этой системе. Там же приведены основные и дополнительные единицы СИ с указанием размерности и данных определения, а также некоторые общие правила пользования и написания обозначений единиц.

Важная задача физического практикума — привить студентам навыки самостоятельного приобретения знаний по изучаемому курсу. Для этого в пособии паряду с кратким содержанием лабораторных работ, методическими указаниями по их выполнению, рекомендациями по обработке данных и вычислению погрешностей включены контрольные вопросы и задания. Ответы на эти вопросы требуют определенной работы студентами литературных источников, список которых приведен в конце книги.

С целью выработки у студентов навыков научно-исследовательской работы, творческого подхода к физическому практикуму во многие лабораторные работы включены дополнительные задания, которые предусматривают самостоятельное выполнение студентами отдельных элементов учебно-исследовательской работы (УИР).

Пособие предназначено для студентов физико-математических специальностей учреждений, обеспечивающих получение высшего педагогического образования. Возможно также его использование студентами других специальностей.

Авторский коллектив благодарен рецензентам — коллективу кафедры экспериментальной и теоретической физики Могилевского государственного университета имени А.А. Куленова и профессору кафедры физики твердого тела Белорусского государственного университета, доктору физико-математических наук В.Г. Шепелевичу — за ценные замечания, способствовавшие улучшению пособия.

Все отзывы и пожелания просим направлять по адресу: 220048, Минск, проспект Победителей, 11, издательство «Высшая школа».

Авторы
ОГЛАВЛЕНИЕ

Предисловие.. 3

РАЗДЕЛ 1. МЕХАНИКА ... 5

Работа 1.1. Измерение времени соударения шаров. Статистический метод оценки случайных погрешностей........... 5
Работа 1.2. Определение линейных размеров и объемов тел. Обработка результатов измерений 12
Работа 1.3. Исследование зависимостей $T(t)$ и $A(t)$ математического маятника ... 20
Работа 1.4. Точное взвешивание. Определение плотности твердых тел и жидкостей 28
Работа 1.5. Изучение прямолинейного движения тел на машине Атуда ... 42
Работа 1.6. Упругий и неупругий удары шаров 49
Работа 1.7. Определение ускорения свободного падения по времени падения тела ... 57
Работа 1.8. Определение ускорения свободного падения по кривой зависимости периода колебаний физического маятника от положения точки подвеса 61
Работа 1.9. Определение ускорения движения центра масс механической системы ... 64
Работа 1.10. Изучение вращательного движения на приборе Обербека .. 70
Работа 1.11. Определение момента инерции махового колеса и момента силы трения .. 74
Работа 1.12. Проверка теоремы Штейнера – Гюйгенса 78
Работа 1.13. Проверка закона сохранения момента импульса .. 81
Работа 1.14. Изучение гироскопа 85
Работа 1.15. Изучение трения качения с помощью наклонного маятника ... 88
Работа 1.16. Определение скорости движения воздушного потока в трубке Вентури ... 93
Работа 1.17. Определение коэффициента вязкости жидкости по методу Стокса .. 96
Работа 1.18. Определение модуля Юнга по растяжению проволоки .. 100
Работа 1.19. Определение модуля Юнга по изгибу стержня ... 103
Работа 1.20. Определение модуля свдвига методом крутильных колебаний .. 106
Работа 1.21. Определение скорости полета пули с помощью крутильно-баллистического маятника 110
Работа 1.22. Определение скорости распространения упругих продольных волн по времени соударения стержней ... 114
Работа 1.23. Определение скорости звука методом интерференции .. 119

РАЗДЕЛ 2. МОЛЕКУЛЯРНАЯ ФИЗИКА
И ТЕРМОДИНАМИКА 124
Работа 2.1. Изучение основных законов идеального газа ... 124
Работа 2.2. Определение плотности сыпучих и пористых тел .. 129
Работа 2.3. Определение молярной газовой постоянной ... 134
Работа 2.4. Определение средней квадратичной скорости молекул воздуха 137
Работа 2.5. Определение вязкости газов ... 140
Работа 2.6. Исследование барометрической формулы ... 145
Работа 2.7. Исследование распределения частиц в поле силы тяжести .. 149
Работа 2.8. Определение отношения теплоемкостей газа акустическим методом 151
Работа 2.9. Определение отношения теплоемкостей газа методом адиабатного расширения 156
Работа 2.10. Определение удельной теплоемкости жидкости ... 160
Работа 2.11. Определение удельной теплоты перехода воды в пар при температуре кипения 162
Работа 2.12. Исследование зависимости поверхностного натяжения от концентрации раствора и температуры с помощью торзионных весов 165
Работа 2.13. Определение поверхностного натяжения методом компенсации давления поверхностного слоя жидкости 169
Работа 2.14. Определение поверхностного натяжения жидкости методом максимального давления в пузырьках 171
Работа 2.15. Определение поверхностного натяжения методом течения пузырьков внутри жидкости 176
Работа 2.16. Исследование зависимости вязкости аморфного вещества от температуры и определение энергии активации его молекул .. 178
Работа 2.17. Определение коэффициента вязкости жидкости по Пуазейлю ... 185
Работа 2.18. Исследование зависимости вязкости жидкости от температуры и определение энергии активации ее молекул ... 188
Работа 2.19. Определение удельной теплоемкости металлов методом охлаждения ... 195
Работа 2.20. Определение температуры и удельной теплоемкости плавления кристаллического вещества 198
Работа 2.21. Определение коэффициента теплопроводности металлов ... 203
Работа 2.22. Определение среднего теплового коэффициента линейного расширения тел 209
Работа 2.23. Определение коэффициента объемного расширения жидкости методом Дюлонга и Пти 212
Работа 2.24. Исследование изменения энтропии в изолированной системе ... 215

РАЗДЕЛ 3. ЭЛЕКТРИЧЕСТВО И МАГНИТИЗМ ... 219
Работа 3.1. Изменение пределов электроизмерительных приборов. Изучение школьного амперетра 219
Работа 3.2. Исследование электростатического поля 228
Работа 3.3. Измерение сопротивлений мостовым методом ... 231
Работа 3.4. Исследование диэлектрических свойств сегнетоэлектриков .. 235
Работа 3.5. Изучение гальванометра магнитоэлектрической системы ... 245
Работа 3.6. Измерение электродвижущей силы источника тока и градуировка термозлемента 258
Работа 3.7. Измерение электроемкости конденсаторов 266
Работа 3.8. Исследование энергетических соотношений в цепи постоянного тока ... 276
Работа 3.9. Исследование зависимости сопротивления металлов и полупроводников от температуры 281
Работа 3.10. Исследование зависимости сопротивления электролитов от температуры и концентрации 287
Работа 3.11. Проверка закона Богуславского – Ленгмюра и определение удельного заряда электрона 291
Работа 3.12. Измерение индукции постоянного магнитного поля .. 298
Работа 3.13. Определение концентрации, подвижности и знака носителей заряда в полупроводниках 309
Работа 3.14. Исследование зависимости магнитной индукции и магнитной проницаемости ферромагнетиков от напряженности магнитного поля .. 317
Работа 3.15. Изучение затухающих электромагнитных колебаний в колебательном контуре 325

РАЗДЕЛ 4. ОПТИКА .. 332
Работа 4.1. Определение фокусных расстояний линзы и сферического зеркала 332
Работа 4.2. Изучение погрешностей линз ... 336
Работа 4.3. Изучение микроскопа .. 340
Работа 4.4. Изучение зрительной трубы ... 345
Работа 4.5. Измерение показателя преломления с помощью рефрактметра 348
Работа 4.6. Определение дисперсии и разрешающей способности стеклянной призмы 352
Работа 4.7. Изучение характеристик источника света ... 357
Работа 4.8. Проверка основных законов фотометрии с помощью фотоэлемента 360
Работа 4.9. Определение длины световой волны с помощью бипризмы Френеля 363
Работа 4.10. Определение радиуса кривизны линзы и величины деформации с помощью колец Ньютона .. 366
Работа 4.11. Изучение интерферометров ... 371
Работа 4.12. Определение длины волны с помощью зонной пластинки ... 375
Работа 4.13. Изучение дифракции света на узкой щели ... 383
Работа 4.14. Изучение дифракционной решетки ... 386
Работа 4.15. Изучение дифракции света на ультразвуковых волнах ... 391
Работа 4.16. Проверка закона Малюса .. 394
Работа 4.17. Определение угла Брюстера и диэлектрической проницаемости стекла .. 397
Работа 4.18. Изучение поляризации обыкновенного и необыкновенного лучей при двойном лучепреломлении 400
Работа 4.19. Изучение вращения плоскости поляризации 402
Работа 4.20. Изучение поглощения света твердыми и жидкими телами ... 407
Работа 4.21. Изучение призменного спектрального прибора ... 413
Работа 4.22. Изучение основных характеристик светофильтров ... 417

РАЗДЕЛ 5. КВАНТОВАЯ ФИЗИКА ... 424
Работа 5.1. Изучение законов теплового излучения 424
Работа 5.2. Изучение фотоэффекта .. 430
Работа 5.3. Изучение дифракции электронов 438
Работа 5.4. Определение потенциала возбуждения атома методом Франка и Герца ... 442
Работа 5.5. Изучение спектра атома водорода 445
Работа 5.6. Изучение спектра ртути ... 451
Работа 5.7. Изучение спектра атома алюминия 455
Работа 5.8. Спектральный анализ сплавов на медной основе с помощью стилоскопа ... 459
Работа 5.9. Изучение газового лазера 463
Работа 5.10. Определение ширины запрещенной зоны полупроводников по краю собственного поглощения 468
Работа 5.11. Изучение природной радиоактивности атмосферного воздуха ... 475
Работа 5.12. Изучение статистических закономерностей радиоактивного распада 477
Работа 5.13. Определение периода полураспада долгоживущего изотопа ... 484
Работа 5.14. Определение активности изотопа \(^{60}_{27}\) Со методом двойных совпадений 489
Работа 5.15. Определение энергии \(\alpha\)-частиц по пробегу в воздухе ... 493
Работа 5.16. Определение максимальной энергии β-излучения по поглощению .. 497
Работа 5.17. Оценка энергии γ-квантів путем измерения коэффициентов ослабления γ-лучей 502
Работа 5.18. Изучение углового распределения космических лучей .. 506
Работа 5.19. Определение масс и времени жизни элементарных частиц .. 509
Работа 5.20. Изучение работы счетчика Гейгера-Мюллера ... 513
Работа 5.21. Применение метода резерфордсовского обратного рассеяния при анализе состава твердых тел 520

Приложения ... 535
1. Основные единицы Международной системы единиц (СИ) ... 535
2. Дополнительные единицы СИ .. 536
3. Производные единицы СИ, имеющие собственные наименования ... 537
4. Внесистемные единицы, допускаемые к применению наравне с единицами СИ 538
5. Внесистемные единицы, допускаемые к применению в специальных областях 539
6. Некоторые особенности применения стандарта «Метрология. Единицы физических величин» 540
7. Множители и приставки для образования десятичных кратных и дольных единиц 543
8. Фундаментальные физические постоянные 543
9. Плотность некоторых веществ .. 545
10. Плотность воздуха ρ (кг/м³) в зависимости от температуры и давления .. 547
11. Состав атмосферного воздуха .. 547
12. Упругие свойства некоторых твердых тел (при температуре 293 К) ... 548
13. Коэффициент восстановления при ударе (для v < 3 м/с) ... 548
14. Скорость звука в твердых телах (при температуре 293 К) ... 548
15. Физические свойства газов при нормальном давлении и температуре 293 К 549

571
16. Физические свойства жидкостей (при температуре 298 К) ... 550
17. Физические свойства воды при разных температурах ... 550
18. Температура кипения воды при разных давлениях ... 551
19. Тепловые свойства твердых тел (при температуре 293 К) ... 551
20. Удельная теплоемкость меди при разных температурах ... 552
21. Давление и плотность насыщенного водяного пара при различных температурах 552
22. Психрометрическая таблица относительной влажности воздуха воздуха (в процентах) 553
23. Диэлектрическая проницаемость веществ (при температуре 293 К) ... 554
24. Температурный коэффициент сопротивления .. 554
25. Удельное электрическое сопротивление металлов и сплавов (при температуре 273 К) 555
26. Показатель преломления некоторых жидкостей .. 555
27. Длины волн основных спектральных линий некоторых элементов .. 556
28. Периоды полураспада радиоактивных изотопов ... 558
29. Значения толщины слоя половинного поглощения и максимальной энергии β-частиц для алюминия ... 559
30. Параметры некоторых химических элементов ... 559
31. Кинематический фактор \(K_m \) ионов гелия \(^4\text{He}^+ \) .. 560
32. Коэффициент Стьюдента для доверительной вероятности \(\alpha \) при \(n \) измерениях 560
33. Значения коэффициента \(\beta_{cp} \) для установления промахов с вероятностью 0,99 в серии из \(n \) измерений .. 561
34. Значения коэффициента \(\gamma \) неравенства Чебышева ... 561
35. Наибольшее значение аргумента \(\varepsilon \), обеспечивающее фиксированную предельную погрешность .. 561
36. Латинский алфавит ... 562
37. Греческий алфавит ... 562
38. Периодическая система элементов Д.И. Менделеева ... 563

Литература .. 564