Mössbauer Studies of the CuFeS₂₋₈ - CuInS₂ System B.V. Korzun¹, V.R. Sobol², M. Myndyk³, V. Šepelák⁴, K.D. Becker³

¹The City University of New York, Borough of Manhattan Community College, 199 Chambers St., New York, NY 10007, U.S.A. ²Belarusian State Pedagogical University, 18 Sovetskaya St., Minsk 220030, Belarus ³Braunschweig University of Technology, Institute of Physical and Theoretical Chemistry, 10 Hans-Sommer-Str., Braunschweig 38106, Germany ⁴Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Abstract

The interaction in the $CuFeS_{2-\delta}$ - $CuInS_2$ system by means of Mössbauer studies and X-ray powder diffraction (XRPD) was studied using two series of alloys for $\delta = 0$ and $\delta = 0.10$ prepared from ternary compounds CuFeS_{2- δ} and CuInS₂ by a three stage solid state synthesis. XRPD revealed the absence of complete solubility in the $CuFeS_{2-\delta}$ - CuInS₂ and showed that the limit of solubility for CuInS₂-based alloys is 0.05 molar part and exceeds the limit of solubility for $CuFeS_{2-\delta}$ -based alloys (0.03 molar part). Mössbauer spectra of the $CuFeS_{2-\delta}$ -CuInS₂ alloys in the two-field range for both $\delta = 0$ and $\delta = 0.10$ can be fitted by two components, a sextet and a doublet, indicating two different positions of iron atoms in the crystal lattice.

Introduction

Multinary semiconducting compounds with the crystal structures of chalcopyrite CuFeS₂ are at the center of current research as absorbing materials in solar cells. To obtain these materials with optimal physical characteristics it is necessary to know the phase equilibriums in these systems. The goal of this paper is to study the interaction in the $CuFeS_{2-\delta}$ - $CuInS_2$ system by means of Mössbauer studies and X-ray powder diffraction (XRPD).

Preparation of samples

The initial elements for the preparation of CuInS₂ and CuFeS₂₋₈ ternary compounds were 99.9998% copper, 99.9997% indium, 99.999% iron, and 99.9999% sulfur. Synthesis of the initial ternary compounds CuInS₂ and CuFeS_{2.8} (with $\delta = 0$ and 0.10) was performed in quartz ampoules by melting chemical elements. Then two series of alloys for $\delta = 0$ and $\delta = 0.10$ with molar part of CuInS₂ (x) equal to 0.01, 0.03, 0.05, 0.125, 0.25, 0.375, 0.50, 0.625, 0.75, 0.875, 0.95, 0.97, and 0.99 were prepared from ternary compounds $CuFeS_{2-\delta}$ and $CuInS_2$ by a three stage solid state synthesis at 1073 K.

Methods

Figure 1. Mössbauer spectra of alloys with molar part of $CuInS_2 x = 0.03$ (UB2) and x = 0.97 (UB12) for $\delta = 0$.

Spectra and their fitting

Both Mössbauer spectra of the CuFeS_{2- δ}-CuInS₂ alloys with $\delta = 0.10$ and $\delta =$ 0 can be fitted by two components, a sextet and a doublet, indicating two different positions of iron atoms in the crystal lattice. The magnetic component (sextet) is due to the position of iron atoms in the tetragonal crystal structure of chalcopyrite CuFeS₂. The second component reflects the fact that there is no complete solubility in the CuFeS₂₋₈-CuInS₂ system and is due to the position of iron dopant in the crystal structure of the CuInS₂based alloys.

 $\delta = 0$ (UB6) and for $\delta = 0.10$ (UA6).

Conclusions

The influence of the variation of chemical composition of chalcopyrite CuFeS_{2- δ} with δ changing from 0 to 0.10 on the limits of solubility in the $CuFeS_{2-\delta}$ - $CuInS_2$ system was determined. The population of the second position of iron atoms approximated by the doublet for CuFeS_{2.8}-CuInS₂ alloys with $\delta = 0.10$ as compared with alloys with $\delta = 0$ indicates that the solubility region in the $CuFeS_{2-\delta}$ - $CuInS_2$ system is extended when using $CuFeS_{2-\delta}$ with $\delta = 0.10$ as the initial compound to prepare alloys.

Barys Korzun is thankful to the PSC/CUNY for their support through the HEO-CLT PD grant.

