ОПТИКА НЕОДНОРОДНЫХ СТРУКТУР-2007

МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ

2-3 октября 2007 г.

Могилев 2007

И.С.Ташлыков, О.М. Михалкович (Беларусь, Минск)

ПОВРЕЖДЕНИЕ СТРУКТУРЫ КРЕМНИЯ ПРИ НАНЕСЕНИИ ТОНКИХ ПЛЕНОК МЕТОДОМ ИАНПУС

Введение

Нанесение тонких пленок на поверхность кремния и не только, имеет большое прикладное значение как для микроэлектроники, так и для оптики. В настоящей работе обсуждаются результаты изучения композиционного состава, повреждения структуры кремния, модифицированного ионно-ассистированным нанесением покрытий в условиях самооблучения (ИАНПУС).

Методика эксперимента

Для осаждения металлсодержащих (Ti, Co) покрытий на кремний в условиях ионного ассистирования использовали резонансный источник вакуумной дуговой плазмы (вакуум 10-2Па) [1]. В настоящем исследовании ускоряющее напряжение было 7 кВ. В качестве подложки использовали пластины (100) Si. Отношение плотности потоков ионизированной и нейтральной фракции осаждаемого на подложку материала при нанесении покрытий составляло 0,2-0,4, скорость осаждения покрытий была 0.3-0.4 нм/мин. Элементный послойный анализ конструкций пленка/кремний выполняли используя резерфордовское обратное рассеяние (POP) ионов гелия He⁺ с E₀ = 2,0 МэВ и компьютерное моделирование экспериментальных спектров РОР по программе RUMP [2]. При построении глубинных профилей компонентов изучаемых конструкций мы используем понятие положения исходной поверхности подложки (ПИПП), которое определяли в экспериментах по предварительному перед нанесением покрытия введению ионной имплантации в часть Si пластины Xe маркера с энергией 10 или 20, или 40кэВ интегральным потоком от 1×10^{14} см⁻² до 2,7×10¹⁵ см⁻². Для изучения пространственного распределения радиационных дефектов в конструкциях покрытие/подложка применяли метод РОР/КИ с энергией ионов He⁺ 2 МэВ и геометрией рассеяния: углы влета, вылета и рассеяния были $Q_1=0^\circ$, $Q_2=12^\circ$, $Q_3=168^\circ$ со-ответственно, а также методику [3]. Разрешение детектора было 25 кэВ. Величины среднего проективного пробега элементов в матрице были рассчитаны при помощи компьютерной программы TRIM-89 [4].

Результаты и их обсуждение

На рис.1 показаны профили пространственного распределения компонентов конструкции, получаемой при нанесении титановой пленки на Si, без введенного ксенонового маркера (а) и с ним (б).

Профиль Ті характеризуется концентрацией, снижающейся от 9 ат % на поверхности, до 1,5 ат % в области межфазной границы системы. Более того, атомы Ті идентифицируются в Si на глубине 105 нм с концентрацией ~0.03 ат %, что свидетельствует об их радиационно-стимулированной диффузии вглубь в процессе нарастания покрытия под радиационным воздействием ассистирующих ионов. Кислород распределен в покрытии неравномерно: его концентрация возрастает с 10 ат % на поверхности покрытия до 25 ат % вблизи ПИПП, а в кремнии снижается в несколько раз, но остается выше, чем концентрация Ті. Профиль С качественно подобен пространственному распределению кислорода в покрытии, однако его концентрация примерно в 2 раза выше. Однако в подложке количество углерода в ~ 2 раза ниже количества кислорода на сопоставимой глубине. Профиль атомов водорода в покрытии качественно согласуется с пространственным распределением титана, однако их концентрация в покрытии на порядок по величине выше, но равна нулю в кремнии. Появление в изучаемых покрытиях О, С, и Н мы связываем с осаждением на поверхность покрытия в процессе его роста совместно с атомами Ті углеводородной фракции и О из остаточного вакуума в мишенной камере, откачиваемой диффузионным паромасляным насосом. Анализируя полученные результаты отметим, что атомы титана и кислорода проникают в кремниевую подложку на ~ 20 нм глубже, если в систему покрытие/подложка предварительно вводился маркер ксенона. Ионы Хе+, являясь маркером, определяют положение поверхности исходной подложки. Диффундируя на большую глубину, атомы Ti увлекают за собой атомы кислорода. Это можно объяснить тем, что при введении ксенонового маркера в кремниевой подложке образуются дефекты, по которым и происходит усиленное проникновение атомов покрытия, а также взаимодействием между собой атомов титана и кислорода. При этом концентрация кислорода на сопоставимой глубине в кремнии с введенным маркером выше, чем в образцах только с покрытием, рис. 1 а и б.

На рис. 2 представлены распределения по глубине радиационных дефектов в кремнии с введенным Хе маркером (1), с кобальтовым покрытием на исходном Si (2) и на Si с Хе маркером (3).

Экспериментально рассчитанный профиль дефектов соответствует теоретически полученному по программе TRIM. Так для ионов ксенона с энергией 40 кэВ средний проективный пробег и страгглинг пробега составляют $R_p \pm \Delta R_p = 27,1 \pm 7,1$ нм.

Характер повреждения структуры кремния при его модифицировании, отсутствие "полочки" на профиле дефектов, генерируемых ионами Со⁺, кривая 2 на рис. 4 свидетельствуют о том, что смещенные в междоузлия атомы Si диффундируют на поверхность и далее входят в состав покрытия. Максимальная концентрация смещенных из узлов атомов кремния, полученная при имплантации ионов Xe⁺, уменьшается при последующем ионно-ассистированном нанесении кобальтового покрытия, что объясняется нами с активацией миграционных процессов в глубь и к поверхности кремния, что также способствует вхождению атомов кремния в покрытие, с одной стороны, и миграции атомов компонентов покрытия в глубь подложки.

Заключение

В работе получены профили радиационных дефектов в кремнии при введении Хе маркера и ионно-ассистированном нанесении тита-

новых и кобальтовых покрытий. Установлен композиционный состав покрытий, в которые входят кроме атомов металлов атомы водорода, углерода, кислорода и кремния. Определено влияние радиационных дефектов на диффузию компонентов покрытия в глубь подложки и атомов кремния в покрытие. Диффузия компонентов покрытия в подложку усиливается при предварительном введении Хе маркера.

Литература

- Ташлыков И.С.. Белый И.М. Способ нанесения покрытий. Патент РБ №2324. 1С1 ВУ, С23 С4/12, С4/18, С14/16. Опубл. 1999. офиц. бюл. гос. пат. ведом. РБ №1.
- 2. Doolittle L.R. //Nucl. Instrum. Methods in Phys. Res. V. B 9. (1985). P. 227
- 3. Bugh E. // Canad. J. of Phys. V. 46. (1968). P. 653
- Zigler J.F., Biersak J.P., Littmark U. Pergamon Press, Oxford. V.1. (1985.) P. 321.

В.Г. Гузовский А.В. Хомченко (Беларусь, Могилев)

ФОТОМОДУЛЯЦИОННАЯ СПЕКТРОСКОПИЯ КАК ИНСТРУМЕНТ ИССЛЕДОВАНИЯ ЭЛЕКТРОННЫХ СОСТОЯНИЙ КВАНТОВОРАЗМЕРНЫХ СТРУКТУР

Для изучения зонной структуры полупроводниковых, в том числе квантоворазмерных, структур широко используются методы модуляционной спектроскопии. Благодаря своей дифференциальной природе эти методы очень чувствительны к оптическим переходам и позволяют определять их энергию с точностью до нескольких мэВ. В то время как методы и механизм модуляции электрическим полем широко описаны в литературе, природа фотомодуляционных изменений в наноразмерных частицах изучена недостаточно, так как под воздействием света в образце происходят как электронные, так и тепловые процессы, различные по своей природе.

В настоящем сообщении представлены результаты исследования тонкопленочных структур CdSe/ПЭТФ, полученные методом послойного вакуумного напыления на стеклянную подложку. Объемная концентрация полупроводника в пленке составляла около 50 об. %. Ширина запрещенной зоны полупроводниковых частиц составляла $E_g = 2,0$ эВ. Вкрапления CdSe представляли собой кристаллиты со средним диаметром около 6 нм, оцененным по величине голубого