проблемы оценки, мониторинга и сохранения биоразнообразия

Учреждение образования «Брестский государственный университет имени А.С. Пушкина»

ПРОБЛЕМЫ ОЦЕНКИ, МОНИТОРИНГА И СОХРАНЕНИЯ БИОРАЗНООБРАЗИЯ

Сборник материалов Республиканской научно-практической экологической конференции

Брест, 23 ноября 2017 года

Брест БрГУ имени А.С. Пушкина 2017 УДК 574.1(476) ББК 28.088(4Беи)я431 П 78

> Рекомендовано редакционно-издательским советом Учреждения образования «Брестский государственный университет имени А.С. Пушкина»

> > Рецензенты:

доцент кафедры инженерной экологии и химии УО «Брестский государственный технический университет», кандидат биологических наук, доцент

В.Н. Босак

доцент кафедры географии и природопользования УО «Брестский государственный университет имени А.С. Пушкина», кандидат географических наук, доцент О.И. Грядунова

Редакционная коллегия:

кандидат биологических наук, доцент Н.В. Шкуратова старший преподаватель М.В. Левковская кандидат биологических наук, доцент Н.М. Матусевич преподаватель Е.А. Санелина

П 78 Проблемы оценки, мониторинга и сохранения биоразнообразия: сб. материалов Респ. науч.-практ. экол. конф., Брест, 23 нояб. 2017 г. / Брест. гос. ун-т им. А.С. Пушкина; редкол.: Н. В. Шкуратова [и др.]. – Брест: БрГУ, 2017. – 290 с. ISBN 978-985-555-715-0.

Материалы сборника посвящены решению актуальных проблем экологии, мониторингу природных и антропогенных экосистем; рационального природопользования и охраны окружающей среды; биоразнообразия и современного состояния флоры и фауны, проблемам охраны и устойчивого использования; биоиндикации и биотестирования; агроэкологии; экологического образования и просвещения.

Издание адресуется научным работпикам, аспирантам, магистрантам, преподавателям и студентам высших учебных заведений, специалистам системы образования.

УДК 574.1(476) ББК 28.088(4Беи)я431 ринга,

около оны. В пьства, тавила

и запой в затво пео периещаюически ия,

га тер-1 охраогиче-

помиие мепракприро-

ельноолюдеизучеилощаместа иитаюс. в завержи-» ред-

огичека явоздают азличрамме

ведей.

экологического образования «Лесная академия». При заповеднике работает экологический кружок, дети в котором занимаются проектной и исследовательской деятельностью. В 2016 г. участниками экологических занятий стали 2 800 школьников и воспитанников детских садов Костромской области.

Чтобы познакомить как можно больше детей и их родителей с заповедником, регулярно проводятся экологические олимпиады и конкурсы, участниками которых ежегодно становятся от 400 до 800 учащихся из Ко-

стромской области.

Пропаганда экологических знаний невозможна без проведения массовых акций и праздников, таких как «Покормите нтиц», «Сбережем елочку», День эколога, День заповедников, «Марш парков» и др. В прошедшем году более 2 000 детей приняли участие в этих мероприятиях. Уже два года подряд сотрудники заповедника выезжают на День леса в Московский зоопарк, где проводятся интерактивные занятия и мастер-классы.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Дубенок, Н. Н. Динамика лесов заповедника «Кологривский лес» / Н. Н. Дубенок [и др.] // Вестн. Поволж. гос. технолог. ун-та. Сер., Лес. Экология. Природопользование. – 2016. – № 3 (31). – С. 5–18.

2. Кологривский лес: экологические исследования: сб. ст. / AH СССР, Ин-т эволюции, морфологии и экологии животных им. А. Н. Северцова; отв. ред. В. Е. Соколов. – М.: Наука, 1986. – 125 с.

3. Коренные темнохвойные леса южной тайги (резерват «Кологривский лес») / Ю. Д. Абатуров [и др.]. – М. : Наука, 1988. – 220 с.

УДК 631.4

Н.Н. ЦЫБУЛЬКО¹, С.С. ПУНЧЕНКО¹, И.И. ЖУКОВА²

¹Минск, Институт почвоведения и агрохимии

²Минск, БГПУ

ПОТРЕБЛЕНИЕ РАСТЕНИЯМИ АЗОТА НА ДЕРНОВО-ПОДЗОЛИСТЫХ ПОЧВАХ РАЗНОЙ СТЕПЕНИ ЭРОДИРОВАННОСТИ ПРИ ВОЗДЕЛЫВАНИИ ОЗИМОЙ ПШЕНИЦЫ И ЯРОВОГО РАПСА

Азотное питание растений является важнейшим условием в интенсификации продукционного процесса сельскохозяйственных культур. Как известно, потребность растений в азоте восполняется за счет почвенных запасов и азота удобрений. Процессы водной эрозии, приводя к смыву гумусового слоя и вовлечению в обработку иллювиального горизонта, приводят к ухудшению условий азотного питания растений.

Исследования проводили в 2012–2014 гг. на стационаре «Стоковые площадки» Института почвоведения и агрохимии НАН Беларуси, расположенном на выпуклом склоне южной экспозиции крутизной 5–7.

Возделывали озимую пшеницу сорта Богатка и яровой рапс сорта Прамень. Схема опыта предусматривала изучение доз азотных удобрений на почвах разной степени эродированности (таблица 1).

Таблица 1 - Схема полевого опыта

0	Варианты	Дозы и сроки применения удобрений			
Эродированность почвы	опыта	Озимая пшеница	Яровой рапс		
	1	Р ₄₀ К ₇₀ – фон	P ₃₀ K ₆₀ - фон		
Неэродированная	2	$\Phi_{OH} + N_{100}$	Фон + N ₁₀₀		
1 1111	3	$\Phi_{OH} + N_{110}$	$\Phi_{OH} + N_{110}$		
	1	Р ₄₀ К ₇₀ – фон	P ₃₀ K ₆₀ – фон		
Среднеэродированная	2	$\Phi_{OH} + N_{120}$	$\Phi_{OH} + N_{120}$		
	3	Фон + N ₁₁₀	$\Phi_{\rm OH} + N_{110}$		
	1	P ₄₀ K ₇₀ – фон	P ₃₀ K ₆₀ - фон		
Сильноэродированная	2	$\Phi_{OH} + N_{130}$	$\Phi_{OH} + N_{130}$		
	3	Фон + N ₁₁₀	Фон + N ₁₁₀		

Примечание: азотные удобрения вносили дробно: N_{80-90} – в начале весенней вегетации озимой пшеницы и перед посевом ярового рапса; N_{20-40} – в подкормку в фазу выхода в трубку растений озимой пшеницы и растягивания растений ярового рапса.

В вариантах 2 дозы азота дифференцированы для неэродированной и эродированных почв от 100 до 130 кг/га действующего вещества, в вариантах 3 применяли среднюю дозу азота 110 кг/га независимо от степени эродированности почвы.

Агрохимические показатели почв: неэродированная почва – pH_{KCI} 5,74, гумус 1,83 %, общий азот 967 мг/кг, подвижный фосфор и калий 284 и 269 мг/кг соответственно; среднеэродированная почва – pH_{KCI} 5,53, гумус 1,78 %, общий азот 689 мг/кг, подвижный фосфор и калий 277 и 263 мг/кг соответственно; сильноэродированная почва – pH_{KCI} 5,52, гумус 1,29 %, общий азот 661 мг/кг, подвижный фосфор и калий 272 и 215 мг/кг соответственно.

Повторность вариантов в опыте четырехкратная. Агрохимические показатели почв определяли: гумус по ГОСТ 26212–91 [1]; р $H_{(KCI)}$ – потенциометрическим методом по ГОСТ 26483–85 [2]; подвижные формы фосфора и калия – по ГОСТ 26207–91 [3], общий азот – по ГОСТ 26107-84 [4].

К показателям, характеризующим режим азотного питания растений, агрономическую и экологическую целесообразность применения азотных удобрений относятся: удельный вынос азота продукцией или величина потребления (поглощения) азота, коэффициент использования азота удобрений (KU_{va}).

Величина относительного участия азота почвы и удобрений в выносе этого элемента урожаем сельскохозяйственных культур существенно зависит от ряда факторов. Принято считать, что чем выше окультуренность почвы, тем долевое участие азота удобрений в общем выносе азота урожаем снижается [5]. Доля азота почвы в выносе элемента с урожаем обычно выше, чем из удобрений, и может достигать 84—85 % [6].

Полученные экспериментальные данные свидетельствуют о преимущественном участии почвенного азота в питании растений и формировании урожая возделываемых сельскохозяйственных культур. В целом в выносе азота урожаем основной и побочной продукции озимой пшеницы азот удобрений (N_{ya}) занимал 22–28 %, почвенный азот – 72–78 %. В выносе азота всей продукцией ярового рапса N_{ya} составил 29–43 %, азот почвы – 57–71 % (таблица 2).

На неэродированной почве удельный вес азота удобрений по озимой пшенице составлял 22–24 %, почвенного азота — 76–78 %, по яровому рапсу, соответственно, 29–31, 69–71 %. С увеличением эродированности почвы возрастала роль азота удобрений в питании растений и формировании урожая. Так, на средне- и сильноэродированной почвах доля его в общем выносе с основной и побочной продукцией для озимой пшеницы составила 26–28 и 24–27 %, ярового рапса — 36 и 43 % соответственно.

При обобщении результатов 289 опытов установлено, что этот показатель составляет в среднем 43 % [7]. К числу причин, снижающих коэффициент использования азота удобрений можно отнести внесение азотных удобрений в дозах, несоответствующих физиологической потребности растений в азоте; высокую растворимость и быстрое превращение в почве выпускаемых форм азотных удобрений, приводящие к потерям и уменьшению запасов соединений азота в почве.

На величину коэффициента использования азота значительное влияние оказывают дозы и сроки внесения азотных удобрений [8].

Таблица 2 – Потребление азота почвы и удобрений растениями озимой пшеницы и ярового рапса в зависимости от доз зотных удобрений и эродированности почвы (в среднем за 2012–2014 гг.)

	Всего, кг/га		В том числе азот, кг/га				N _{уд}		КИул,	
Вари-			почвы		удобрений		в общем выносе, %		%	
	Озимая	Яро-	Озимая	Яро-	Озимая	Яро-	Озимая	Яро-	Озимая	Яро-
	пше-	вой	пше-	вой	пше-	вой	пше-	вой	пше-	вой
-	ница	рапс	ница	рапс	ница	рапс	ница	рапс	ница	рапс
Неэродированная почва										
2	_88,4	79,0	88,4	79,0	_					_
3	152,0	144,8	115,7	99,6	36,2	45,2	24	31	36	45
J	156,4	156,7	122,1	111,8	34,3	44,9	22	29	31	41

Продолжение таблицы 2

			C	реднеэр	одирова	нная поч	ва			-
1	63,1	64,5	63,1	64,5		_	_	_	_	-
2	128,5	131,3	95,7	83,7	32,8	47,6	26	36	27	40
3	123,6	123,8	88,5	78,8	35,0	45,0	28	36	32	41
			C	ильноэр	одирова	нная поч	ва			
1	54,7	52,0	54,7	52,0		-	-	_		_
2	119,5	111,6	90,9	63,3	28,6	48,3	24	43	22	37
3	102,7	105,3	75,2	60,3	27,5	45,0	27	43	25	41

Согласно экспериментальным данным, коэффициент использования азота зависел от доз азотных удобрений, а эродированность почвы не влияла на данный показатель. Так, в варианте 3, где на всех по степени смытости почвах вносили одинаковую дозу азота (N_{110}) К $N_{y_{11}}$ при возделывании озимой пшеницы составил 25–32 %, ярового рапса — 41 %. В варианте 2 с дифференцированным по склону применением удобрений наблюдалось снижение коэффициента использования азота с 36 % при дозе N_{100} на неэродированной почве до 22 % при дозе N_{130} на сильноэродированной почве. При возделывании ярового рапса снижение коэффициента использования азота в данном варианте на сильноэродированной почве по сравнению с неэродированной составило 8 %.

Таким образом, на величину потребления азота почвы и азота удобрений оказывают влияние как биологические особенности сельскохозяйственных культур, так и степень эродированности почвы и дозы применения азотных удобрений. В выносе азота урожаем основной и побочной продукции азот удобрений при возделывании озимой пшеницы занимает 22–28 %, почвенный азот – 72–78 %, ярового рапса, соответственно, 29–43, 57–71 %. С увеличением степени эродированности почвы роль азота удобрений в питании растений и формировании урожая возрастает. Коэффициент использования азота находится в зависимости от доз азотных удобрений, эродированность почвы несущественно влияет на данный показатель.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Почвы. Определение органического вещества в модификации ЦИНАО: ГОСТ 26213-91. Введ. 07.01.93. Минск: Изд-во стандартов, 1992. 6 с.
- 2. Почвы. Приготовление солевой вытяжки и определение рН по методу ЦИНАО: ГОСТ 26483-85. Введ. 07.01.86. Минск: Белорус. гос. ин-т стандартизации и сертификации, 1987. 4 с.

- 3. Почвы. Определение подвижных соединений фосфора и калия по методу Кирсанова в модификации ЦИНАО: ГОСТ 26207-91. Введ. 07.01.93. Минск: Белорус. гос. ин-т стандартизации и сертификации, 1992. 6 с.
- 4. Почвы. Методы определения общего азота: ГОСТ 26107-84. Введ. 07.01.85. Минск: Белорус. гос. ин-т стандартизации и сертификации, 1985. 6 с.
- 5. Семененко, Н. Н. Азот в земледелии Беларуси / Н. Н. Семененко, Н. В. Невмержицкий. – Минск : Хата, 1997. – 196 с.
- 6. Цыбулько, Н. Н. Использование зерновыми культурами азота почвы и удобрений / Н. Н. Цыбулько, Д. В. Киселева, И. И. Жукова // Вес. Нац. акад. навук Беларусі. Сер. аграр. навук. 2008. № 2. С. 36–41.
- 7. Hauck, R. D. Nitrogenfertilizerseffectson nitrogen cycle processes / R. D. Hauck // Terrestrial nitrogen cycles: Ecol. Bull. Stockholm, 1981. № 33. P. 551–562.
- 8. Кудеяров, В. Н. Цикл азота в почве и эффективность удобрений / В. Н. Кудеяров. М.: Наука, 1989. 215 с.