ЭНДОКРИННАЯ СИСТЕМА И ЕЕ РОЛЬ В ГУМОРАЛЬНОЙ РЕГУЛЯЦИИ ФУНКЦИЙ ОРГАНИЗМА (УРОК-ЛЕКЦИЯ)

В. Ф. Черник,
кандидат биологических наук, доцент кафедры основ медицинских знаний БГПУ им. Максима Танка

Учащиеся, обучающиеся в классах биологического профиля, нуждаются в углубленном изучении раздела «Биология человека», поскольку он широко представлен на вступительных экзаменах в университеты и на централизованном тестировании. В частности, по данному разделу требуются детальные знания эндокринной системы и ее работы. В этой связи для старших школьников специализированных классов рекомендуется урок-лекция «Эндокринная система и ее роль в гуморальной регуляции функций организма». Учащиеся должны усвоить структурно-функциональную организацию желез внутренней секреции, выделяемые ими гормоны, нарушения гуморальной регуляции функций. Особенностью урока-лекции является то, что учащиеся конспектируют учебный материал в форме текстов, фиксируют план урока, ключевые понятия, термины. Для обеспечения наглядности учебного процесса желательно мультимедийное сопровождение. Кроме того, в процессе урока такого типа учитель привлекает учащихся к краткому обсуждению, уточнению отдельных узловых вопросов. Поэтому заранее должны быть подготовлены вопросы для контроля усвоения изучаемого материала. В заключении необходимо выполнить тренировочные тестовые задания. Урок-лекция рассчитана на два занятия.

Цель урока: сформировать представление о гуморальной регуляции организма; рассмотреть эндокринные железы (железы внутренней секреции), их местонахождение, строение, выделяемые ими гормоны; выяснить роль гормонов в процессах жизнедеятельности и их физиологические эффекты.

Оборудование: мультимедийные средства, мультимедийные слайды (картинки), раздаточный материал (рисунки желез внутренней секреции), тренировочные задания.

План урока:
1. Общие закономерности эндокринной системы (системы желез внутренней секреции).
2. Эндокринные железы и нарушения их функций:
 - мозговые железы;
 - железы шеи и грудной клетки;
 - железы брюшной полости;
 - железы таза.
3. Тестовые задания и вопросы для обсуждения.

Эндокринной системе принадлежит ведущая роль в гуморальной регуляции функций, физическом и психическом развитии организма человека, повышении его иммунитета. Нарушение функций желез внутренней секреции влечет за собой отклонения в росте, физическом здоровье, формировании интеллекта, обмене веществ. Поэтому изучению их физиологии уделяется особое внимание.

Общие закономерности физиологических функций эндокринной системы

Эндокринная система представлена совокупностью желез внутренней секреции (рис. 1). Их согласованная деятельность обеспечивает гуморальную регуляцию большинства функций организма человека, они вырабатывают химически активные вещества — гормоны непосредственно в кровь или лимфу, поскольку не имеют выводных...
протоков в отличие от желез внутренней секреции (рис. 2, А). При этом устанавливается тесное взаимодействие химически активных веществ, гормонов и элементов нервной системы (нейронов), т. е. нейрогуморальная регуляция физиологических функций.

Рис. 1. Железы внутренней секреции человека:
1 — эпифиз; 2 — гипофиз; 3 — щитовидная железа; 4 — поджелудочная железа; 5 — надпочечники; 6 — семенники

Свойства гормональных процессов:
- Активируются на большом расстоянии от места образования, поэтому их называют гормонами;
- отличаются сильным специфическим действием, т. е. оказывают влияние на определенный орган-мишень, функцию организма;
- обладают высокой биологической активностью;
- длительный период жизни гормонов мала — от нескольких часов до суток, после чего они теряют свою активность.

Функции гормонов:
- обеспечивают рост и развитие организма;
- обеспечивают адаптацию организма к постоянно меняющимся условиям окружающей среды;
- обеспечивают нормальное умственное и половое развитие;
- контролируют процессы обмена веществ;
- поддерживают на необходимом уровне физиологические константы, т. е. обеспечивают гомеостаз.

В настоящее время известно более 60 гормонов, многие из которых синтезированы химическим путем и находят широкое применение в медицине.

К железам внутренней секреции относятся: гипофиз, эпифиз, щитовидная железа, поджелудочная железа, надпочечники (см. рис. 1). Поджелудочная железа и половье железы являются железами мешаной секреции, т. е. функционируют как орган и как железа внутренней секреции.

Каждая железа отличается формой, величиной, местоположением, однако для всех их характерны некоторые общие свойства, в частности способность выделять секреты в кровеносную систему. Кровеносные сосуды пронизывают железу во всех направлениях, выполняя функцию отсутствующих протоков (см. рис. 2, А).
В настоящее время известна APUD система, к которой относят целую группу секреторных клеток, т.е. клеток с эндокринной функцией, способных образовывать биологически активные вещества, обладающие свойствами гормонов. Такие группы клеток встречаются в тканях желудочно-кишечного тракта, в поджелудочной железе, почках, плаценте и других органах. Секреторные клетки кишечника вырабатывают гормон секретин, воздействующий на поджелудочную железу, клетки желудка — гормон гастрин, регулирующий секрецию желудочного сока, почек — гормон ренин, обладающий сосудосуживающим действием, повышающий артериальное давление.

Все железы внутренней секреции функционально связаны между собой. Высшим центром регуляции их функций является подбуторная область (гипоталамус) — отдел промежуточного мозга. Гипоталамус неоспорожно связан с гипофизом и образует с ним единую гипоталамо-гипофизарную систему, управляющую множеством функций организма (рис. 2, В).

Эндокринные железы играют ведущую роль в развитии организма, формирования иммунитета, обмене веществ, в общем состоянии здоровья. Сбои в работе эндокринной системы — это прежде всего нарушения гуморальной регуляции организма, которые могут выражаться увеличением (гиперфункцией) или уменьшением (гипофункцией) деятельности желез внутренней секреции. Гипер- и гипофункции могут проявляться и морфологическими изменениями — разрастанием, увеличением железистых элементов. У детей и взрослых выявлены отклонения в росте, развитии, формировании интеллекта, обмене веществ, иммунитете, поведении, обусловленные нарушением функций эндокринных желез.

По месту расположения эндокринные железы объединены в четыре группы:
- Мозговые железы — гипофиз, эпифиз, подбуторная область головного мозга (гипоталамус).
- Железы шеи и грудной клетки — щитовидная, околощитовидные, вилочковая.
- Железы брюшной полости — острооковидная часть поджелудочной железы, надпочечники.
- Железы таза — половье железы.

Эндокринные железы и нарушения их функций

Мозговые железы (рис. 3)

Гипофиз — нижний мозговой придаток, ведущая железа внутренней секреции, которая регулирует деятельность целого ряда других эндокринных желез. Вырабатывает более 20 гормонов. Он расположен на основании черепа (тело клиновидной кости имеет гипофизарную ямку) и соединен с головным мозгом ножкой. Весит гипофиз 0,5—0,8 г. В железе различают переднюю (70 % от всей массы), промежуточную (10 %) и заднюю (20 %) доли.

Передняя доля гипофиза (аденогипофиз) вырабатывает следующие гормоны:
- гормон роста — СТГ — соматотропный гормон, или соматотропин (влияет на синтез белка в тканях, рост костей, особенно трубчатых);
- гормон, стимулирующий деятельность коры надпочечников — АКТГ (адренокортикотропный гормон);
- гормон, стимулирующий деятельность щитовидной железы — ТТГ (тиреотропный гормон);

Рис. 3. Мозговые железы:
1 — большая полушария головного мозга;
2 — промежуточный мозг; 3 — средний мозг; 4 — мост; 5 — продольговатый мозг;
6 — мозжечок гипофиза, гипоталамус, эпифиз — обозначены знаком +
• гормон, стимулирующий развитие и деятельность половых желез, половое со-зревание — ГТГ (гонадоцитропный гормон). Различают следующие виды ГТГ: фолликулостимулирующий и лютеинизирую-щий гормоны;
• фолликулостимулирующий гормон — ФСГ у женщин стимулирует рост фоллику-лов, секрецию половых гормонов, например эстрadiола — гормона, выделяемого яични-ком; у мужчин — сперматогенез (развитие и созревание сперматозоидов), синтез и секрецию половых гормонов (тестостерона);
• лютеинизирующий гормон — ЛГ у женщин стимулирует овуляцию, образова-ние желтого тела яичника, секрецию по-ловых гормонов (прогестерон, гормон желтого тела), а также овогонов (развитие и созревание яйцеклеток); у мужчин — секрецию половых гормонов (андрогенов);
• лактотропный гормон (пролактин) — ЛТГ, стимулирующий развитие молоч-ных желез, вторичных половьи признаков и лактацию.

В подростковом периоде, отличающемся бурной эндокринной перестройкой, усиливаются деятельность передней доли гипофиза, и выделяемый ею гормон роста вызывает увеличение длины тела на 6—10 см в год. Никогда, за исключением первых двух лет жизни, человек не растет так быстро. Активизация роста детей и подростков происходит под влиянием СТГ, который стимулирует так называемые ростовые точки (деления клеток эпифизарного хряща и надкостицы), повышая активность остеобластов — нервных клеток костной ткани. Возможны гипо- и гиперфункция передней доли гипофиза.

При гипофизии передней доли гипо-физа задерживаются или останавливает-ся рост ниже 130 см. Это так называемый гипофизарный нанизм, или карлико-вость. Для гипофизарных карликов ха-рактерен инфантилизм (замедленное раз-витие или недоразвитие половой сферы), хотя в целом их психическое развитие со-ответствует возрасту. Гипофиза передне-й доли гипофиза чаще обусловлена ее поражением опухолью, травмой, инфици-цией и может привести к гипофизарной карликовости. Примерно 8 % детей име-ют задержку роста вследствие гипофунк-ции передней доли гипофиза.

При гиперфункции передней доли гипофиза в детском возрасте развивается гигантитизм, характеризующийся увеличе-нием роста выше 220 см. Пропорции тела сохраняются, только голова кажется маленькой. У гигантов так же, как и у карликов, отмечается недоразвитие поло- вой системы. При гиперфункции пере-дней доли в пожилом возрасте развивае-т się акромегалия. При этом увеличены выступающие части костей — нос, чело- сти (чаще нижняя), надбровные дуги, кисти, стопы.

Средняя доля гипофиза выделяет мела- нотропный гормон, регулирующий пит-менный обмен. Задняя доля (нейрогипо- физ) гормонов не синтезирует. Они сюда поступают по аксонам нейросекреторных клеток гипоталамуса, образующим гипота- ламо-гипофизарный тракт (см. рис. 2, Б) и выделяются в кровь. Эти гормоны анти-диуретический (АДГ) и окситоцин. Анти- диуретический гормон (АДГ), вазопрессин уменьшает мочеиспускание, обеспечивает реабсорбцию, обратное всасывание воды в почечных каналах, а также суживает кровеносные сосуды и повышает артери- альное давление. Окситоцин усиливает со- кращение матки и поэтому необходим во время и после родов.

При гипофункции задней доли гипо- физа развивается несахарный диабет (не- сахарное мочеизнурение). Больной испы-тывает мучительную жажду и выпивает до 8 литров воды в сутки. Стоит же вы- деляется и мочи.

Подбуторная область — гипоталамус контролирует все процессы, регулируемые вегетативной нервной системой — обмен веществ, температуру тела, сон, бодра-вание, двигательную активность, аппетит, голод, насыщение. Гипоталамус и задняя доля гипофиза функционально связаны между собой с помощью аксонов. Гипота- ламус вырабатывает гормоны, которые стимулируют секрецию гипофизарных гормонов. Е тому же по аксонам гормоны гипоталамуса поступают в заднюю долю гипофиза, а затем через нее выделяются в кровь. Например, биохимиками выделены морфиноподобные гормоны гипоталамуса (либерин, статины), обладающие нарко- тическими свойствами, регулирующие процессы полового возбуждения, эмоции и
д. Либерны и статины также регулируют выработку гормонов передней доли гипофиза (ТТГ регулируется тиреоидными, СТГ — соматостатином и соматолиберином, АКТГ — кортикотропином, ФСГ — фолликулярным и т. д.). В литературе содержатся сведения о том, что избыток морфиноподобных гормонов способствует развитию гомосексуализма.

Эпиаз — верхний мозговой привада, расположенный над четверохолмиком среднего мозга. Назван также пищеводным телом из-за характерной формы. Вес эпиаза — 0,2 г. Железа развивается до 4 лет, функционирует до 7 лет, затем атрофируется. Исследованиями установлено, что гормон эпиаза — мелатонин — стимулирует образование в гипофизе гонадотропного гормона ГТГ, стимулирующего развитие половых желез и тем самым задерживает преждевременное половое созревание, которое может наступить при посредстве эпиаза в детском возрасте. Гормон серотонин участвует в регуляции поведения, сна, терморегуляции.

Железы шеи и грудной клетки

Щитовидная железа расположена на передней поверхности гортани. Состоит из двух долей и перешейка, весит 30—40 г. Ее ткань образована фолликулями, а их стенка — одним слоем клеток — тироцитов (рис. 4), вырабатывающих йодсодержащие гормоны — тироксин, трийодтиоронин, тирокальцитонин, которые влияют на обмен веществ, деятельность нервной и сердечно-сосудистой систем, рост, умственное развитие детей и подростков. В подростковом возрасте (12—16 лет) щитовидная железа функционирует усиленно.

Гиперфункция (избыточная продукция тироксина) вызывает повышенную возбудимость нервной системы, резко выраженную эмоциональность, сравнительно быструю утомляемость, ослабление торможения нервных центров в коре головного мозга. При более выраженной гиперфункции железы увеличивается обмен веществ, усиливается возбудимость нервной системы, появляется потливость, учащается сердцебиение, возникает «пульсация». Развивается тиреотоксиказ, или Базедова болезнь (по фамилии немецкого врача, который впервые ее описал).

При гипофункции щитовидной железы развивается умственная отсталость (кератинизм) и гипотиреоз (старое название микседема). Для ранней диагностики недостаточности функции щитовидной железы определяется содержание тиреоидных гормонов в крови. Широкое использование такой методики позволяет обеспечить самую раннюю диагностику гипотиреоза и фактически ликвидировать это заболевание, так как можно своевременно применить гормонзаместительную терапию. Назначение гормонов в дошкольном периоде уже не дает должного результата.

Если с пищей и водой в организм поступает недостаточное количество йода, то соответственно уменьшается и выделение тироксина. По принципу обратной связи это вызывает усиленную секрецию тиреотропного гормона гипофиза — ТТГ, усиливающего функцию щитовидной железы, вследствие чего она начинает увеличиваться. Возникает так называемый эндемический зоб. Опыты на кроликах показали, что при удалении у них щитовидной железы рост и развитие останавливались.

При гипофункции щитовидной железы необходима йодная профилактика, и, прежде всего, морские продукты (морская капуста, морская рыба, креветки, кальмары), добавление в уже приготовленные блюда йодированной соли. Рекомендуется также применение специальных школьных комплексов, включающих йод на основе йодистого калия.

Рис. 4. Фолликулы щитовидной железы: 1 — кровеносные капилляры; 2 — фолликул; 3 — венки; 4 — железистые клетки (тироциты); 5 — коллоид, содержащий гормоны щитовидной железы
ленную пищу йодированной солью, употребление антиоксидантного комплекса витаминов с йодом.

Установлено, что почти 80 % опухолей щитовидной железы связаны с облучением в том или ином виде. После чернобыльской катастрофы количество людей, страдающих тиреоидитами и опухолями щитовидной железы, возросло в 2 раза, особенно в Брянском, Наро-Фоминском и Хойникском районах Беларуси. Состояние щитовидной железы у жителей этих районов необходимо систематически контролировать с помощью УЗИ и других методов.

В щитовидной железе есть особые парафолликулярные клетки, расположенные между тироцитами, которые синтезируют гормон тиреокальцитонин, обладающий большой активностью, чем тироксин, контролирующий обмен кальция и фосфора, сберегая их в костях. У детей под действием этого гормона снижается уровень кальция в крови и усиливаются процессы окостенения в растущих костях, так как ионы кальция депонируются в костной ткани. При гипофункции происходит размягчение костей, возможны искривления позвоночника, конечностей, т. е. процесс, аналогичные апластинозу D.

Паращитовидные (околощитовидные) железы расположены на заднебоковой поверхности щитовидной железы. Их всего четыре, общий вес — 0,1—0,5 г. Они вырабатывают гормон — параатрию, который влияет на обмен кальция и фосфора и является антигиперпаратиреозом. Он возбуждает функцию остеокластов (костеразрушающих клеток) и способствует переко ду кальция из костной ткани в кровь.

При гипофунсии железы уменьшается содержание кальция в крови, нарушаются функции нервно-мышечной системы (мионевральных синапсов), что приводит к резкому ослаблению мышц — развитию судорожной болезни — тетании.

При гипертрофии железы усиливаются действия гормона на остеокласты, происходит вымывание кальция из костной ткани, его содержание в костях уменьшается, а в крови — увеличивается. Кости становятся пористыми (остеопорозом), избыток кальция в крови откладывается во внутренних органах, чаще всего в почках (почечно-каменная болезнь) и сосудах (атеросклероз).

Вилочковая железа (thymus) расположена в грудной полости позади рукоткя грудины. Состоит из двух долей, между которыми находится прослойка соединительной ткани. Наибольшего развития железа достигает к 12—13 годам (рис. 5), вес ее в это время развен 35—40 г. Затем происходит постепенное замещение ткани железистой зернистой тканью (инволюция). У взрослых иногда долго сохраняются небольшие участки железистой ткани, имеющие гормональное значение.

![Рис. 5. Вилочковая железа до (α) и после (β) полового созревания: 1 — щитовидный хрящ; 2 — щитовидная железа; 3 — трахея; 4 — вилочковая железа; 5 — легкие; 6 — сердце](image)

Тимус — центральный орган иммунитета. Красный костный мозг содержит типы кроветворные клетки, которые являются предшественниками всех форменных элементов крови. С током крови эти клетки попадают в вилочковую железу, где дозревают, превращаясь в Т-лимфоциты, которые в дальнейшем мигрируют в определенные зоны лимфоузлов и селезенки. Они принимают участие в разрушении отживших, чужеродных или зло качественных клеток, т. е. обеспечивают клеточный и гуморальный иммунитет.

Ребенок с нормальной функционирующей вилочковой железой имеет хороший иммунитет. У детей, страдающих хроническими заболеваниями, отмечается резкое уменьшение железы, что обусловливает массовую гибель лимфоцитов. Недоразвитие тимуса приводит к нарушению минерального обмена, кости становятся
мягкими, характерны мышечная атония, тучность, ослабленный иммунитет. Поражение вилочковой железы ведет к быстрому и интенсивному развитию половых органов. Предполагают, что гормон железы тимозин задерживает преждевременное половое созревание.

Железы брюшной полости

Поджелудочная железа — железа смешанной секреции. У взрослых весит 72—76 г. Эндокринная часть поджелудочной железы — панкреатические островки Лангерганса, состоящие из альфа- и бета-клеток.

Бета-клетки островков вырабатывают гормон инсулин (рис. 6), который оказывает влияние на углеводный обмен, поддерживающий постоянный уровень сахара в крови (инсулин обеспечивает снижение уровня глюкозы в крови, стимулируя ее превращение в гликоген для запасания в печени и мышцах, обеспечивает ускорение транспорта глюкозы в клетки, кроме нервных). При гипофункции бета-клеток, недостаточном количестве инсулина развивается хроническое заболевание — сахарный диабет. У больных пониженна способность тканей усваивать глюкозу и нарушен синтез гликогена. В результате этого уровень ее в крови повышается (более 6,5 ммоль/л), она начинает выделяться с мочой.

Основной признак болезни — жажда, больные за сутки выпивают значительное количество воды. Появляются слабость, головокружение, зуд кожных покровов, так как сахар выделяется через поры кожи. Возможны гнойные поражения кожи. Если немедленно не начать лечение, то может развиться гипергликемическая (диабетическая)coma с потерей сознания, нарушением сердечной деятельности, функции почек. При этом кожные покровы сухие, зрачки сужены, дыхание шумное и др.

При избыточном количестве инсулина чрезмерно снижается уровень сахара в крови (гипогликемия). Это не самостоятельное заболевание, а результат передозировки инсулина или погрешностей в соблюдении диеты. Первыми признаками гипогликемии являются: чувство голода, слабость, холодный пот, дрожь. Больному необходимо принять углеводосодержащую пищу.

Альфа-клетки островков Лангерганса вырабатывают гормон глюкагон, который является антагонистом инсулина и предотвращает чрезмерное снижение сахара в крови, которое может произойти при усилении по каким-либо причинам секреции инсулина.

Надпочечники расположены на верхних полюсах почек. Это парный орган общим весом около 14—15 г (рис. 7). В надоч-
почечники различают корковое вещество, расположенное снаружи, и мозговое ве-
щество, находящееся в центре.

В мозговом веществе вырабатываются
гормоны адреналин и норадреналин. Адре-
налин возбуждает симпатическую це-
рвную систему. Под его действием усилива-
ются и учащаются сокращения сердца, суживаются кровеносные сосуды (за ис-
ключением сосудов сердца), повышается артериальное давление, расслабляются
мышцы мелких бронхов. При таких эмо-
циональных состояниях организма, как
гнев, страх, содержание адреналина в
крови значительно возрастает. Одним из
методов оживления останавливающегося сердца является его внутрисердечное введение. В мальских дозах адреналин возбуждает ум-
ственную деятельность, в больших — тор-
мозит. Действие адреналина кратковре-
менно, так как он быстро разрушается
специальными ферментами крови.

Норадреналин оказывает в основном аналогичное действие и лишь на некото-
рые функции действует противоположно.
Так, например, норадреналин замедляет часоту сердечных сокращений.

Корковое вещество надпочечников вы-
рабатывает несколько групп гормонов —
глюкокортикоиды, минералокортикоиды,
половые. Усиленная выработка корой глю-
кокортикоидов (гидрокортизон и др.) про-
исходит при различных неблагоприятных
воздействиях, стрессах. Они регулируют обмен веществ, повышают сопротивле-
мость организма к различным неблагопри-
ятным воздействиям (бактериальные ток-
сии, низкая температура, стресс и др.),
оказывают сильное противовоспалительное
действие, снижают мышечную усталость.
К минералокортикоидам относится гормон
альдостерон, регулирующий уровень ионов
натрия и калия в крови человека.

В коре надпочечников вырабатываются
некоторые половые гормоны. Гиперфунк-
ция коры сопровождается преждевремен-
ным образованием половых гормонов, что
вызывает раннее половое созревание.

При гиперсекреции адренокортико-
тропного гормона гипофиза (АКТГ) про-
исходит избыточное образование гидрокортизона в коре надпочечников (гипер-
функция коры надпочечников). При этом возникает болезнь Иценко — Кушинга. У
больных развивается ожирение по типу
«булова», при котором туловище стано-
вится очень массивным, а руки и ноги
остаются тонкими. При гипофункции
коры надпочечников развивается бронко-
вая (Аддисонова) болезнь, получившая
своё название благодаря одному из при-
знаков — бронзовой пигментации кожи.

Железы газа

Половые железы определяют рост и
развитие организма детей, оказывают су-
щественное влияние на обмен веществ.
Являются железами смешанной секре-
ции. Внешнесекреторная функция поли-
вых желез — выделение половых клеток.
Внутреннесекреторная функция — выделение половых гормонов. Половые гормоны
оказывают большое влияние на организм.
Они определяют половое созревание, рост,
физическое, психическое развитие. С вы-
делением половых гормонов связано поло-
вое созревание. Под половым созреванием
понимают развитие первичных и появле-
ние вторичных половых признаков. Пер-
вичные половые признаки — это особен-
ности строения половых желез и половых
органов у мужчин и женщин. К вто-
ричным половым признакам относятся
все другие особенности строения, которы-
ми один пол отличается от другого. Это
голос, характер оволосения, различная
степень развития подкожной жировой
ткани, особенности строения скелета.

Мужские половые гормоны — андроге-
ны (тестостерон и андростерон) в ходе ок-
тогенеза участвуют в развитии мужских
половых органов, вторичных половых при-
знаков, регулируют сперматогенез, поло-
вое поведение, половую дифференциацию
у эмбриона, а также жировом обмен ве-
ществ. Женские половые гормоны — эстрогены (эстрadiол, эстрон) обеспечивают рост яйцеклеток, развитие половых орга-
нов, формирование вторичных половых
признаков, половое поведение, половую
dифференциацию у эмбриона и прогесте-
рон, регулирующий нормальное течение
беременности, периодичность менструа-
ций и др. Гиперфункция половых желез
у подростков вызывает быстрый рост
тела, ранее половое созревание, гипо-
функция — оказывает обратное влияние
на организм.
Эндокринная система участвует в гуморальной регуляции всех функций организма. Гормоны — это специфические возбудители роста, развития, обмена веществ, адаптации организма. Они влияют на формирование организма уже в период внутриутробного развития. Установлено, что у плодов внутрисекреторную функцию осуществляют гипофиз, щитовидная, поджелудочная и половые железы. Особенно возрастает деятельность эндокринных желез в возрасте 6—7 лет, а также в период полового созревания (активизируются деятельность гипофиза и эпифиза, половых желез).

Вопросы для контроля знаний

1. Назовите особенности строения желез внутренней секреции.
2. Перечислите свойства гормонов.
3. Какие процессы в организме регулируют гормоны? Гипоталамус — высший подкорковый центр гуморальной регуляции функций организма.
4. Гипофиз: местонахождение, строение, основные гормоны передней доли.
5. Гипер- и гипофункция передней доли гипофиза.
6. Задняя доля гипофиза: основные гормоны, гипофункция.
7. Эпифиз: местонахождение, строение, основные гормоны.
8. Щитовидная и паращитовидная железы: местонахождение, строение, основные гормоны.
10. Функции вилочковой железы.
11. Надпочечники: местонахождение, строение, основные гормоны.
12. Гипоталамо-гипофизарная система и ее работа.
13. Гипер- и гипофункция щитовидной железы.
14. Гормоны мозгового слоя надпочечников и их влияние на организм.
15. Гормоны коркового слоя надпочечников и их влияние на организм.
16. Эндокринная часть поджелудочной железы.
17. Гипер- и гипофункция поджелудочной железы.
18. Воздействие инсулина и глюкагона на организм.
19. Влияние половых гормонов на организм.
20. Мужские и женские половые гормоны и роль передней доли гипофиза в регуляции их секреции.

Тренировочные задания

1. Тесты.
 1. Удаление какой железы вызывает преждевременное половое созревание? (…) Гипофиз. (…)
 2. Гипофиз — это железа, которая управляет функциями… (…)
 3. Гипофиз — это железа, которая управляет функциями… (…)
 4. Бета-клетки островков Лангерганса вырабатывают гормон… (…)
 5. Назовите железы, которые вырабатывают гормон… (…)
 6. Щитовидная железа — это железа, которая вырабатывает гормон… (…)
 7. Отделение молока — это функция… (…)
 8. Гипотиреоз — это состояние организма, когда… (…)
 9. Укажите железы, которые вырабатывают гормон… (…)
 10. Какие функции выполняет гипофиз? (…)
 11. Назовите железы, которые вырабатывают гормон… (…)
 12. Назовите железы, которые вырабатывают гормон… (…)
 13. Какую функцию выполняет гипофиз? (…)
 14. В какой части железы происходит синтез гормонов? (…)
 15. Какая железа влияет на метаболизм организма? (…)
 16. Какие железы вырабатывают гормоны? (…)

(Окончание следует.)
17. Какой из гормонов повышает уровень глюкозы в крови: а) глюкагон, б) альдостерон, в) прогестерон?
18. Какой из гормонов ускоряет рост мышц и костей: а) паратгормон; б) соматотропин, в) секретин, г) прогестерон?

П. В таблице заполните строки, отмеченные звездочками.

<table>
<thead>
<tr>
<th>Регуляция выделения гормонов эндокринных желез</th>
<th>Железы с эндокринной тканью (смешанной секреции)</th>
<th>Органы с эндокринной функцией клеток</th>
</tr>
</thead>
<tbody>
<tr>
<td>Щитовидная железа (тироцин) регулирует ТТЗ</td>
<td>Поджелудочная железа *</td>
<td>Плацента</td>
</tr>
<tr>
<td>Коре надпочечников (гидрокортизон) *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Яичники (эстрадиол) *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Яичники (прогестерон) и семенники (тестостерон) *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Список рекомендуемой литературы