

ПОСЛОЙНОЕ РАСПРЕДЕЛЕНИЕ IN В СПЛАВАХ АЛЮМИНИЯ, ПОЛУЧАЕМЫХ ВЫСОКОСКОРОСТНОЙ КРИСТАЛЛИЗАЦИЕЙ ИЗ РАСПЛАВА

Яковенко С.В.

Содержание

Ведение ФВЗЧК'2014 Метод сверхбыстрой закалки из расплава (СБЗР) Сплавы с микрокристал лической структурой Сплавы с Появление аморфной Метастабиль структурой -ных фаз Увеличение растворимости компонентов сплава

Цель исследования:

Изучение влияния СБЗР на элементный состав, смачивание, морфологию сплавов Al-In

Практическое применение быстрозакаленных материалов

> Широко используются в электротехнике в качестве припоя

Актуальность в авиации и энергетике

Методика эксперимента

Размер фольг: 30-80 мкм толщиной и 5-10 мм шириной

Экспериментальные условия

Морфология поверхности	атомно- силовая микроскопия (бесконтактный статистический режим работы микроскопа)
Элементный анализ	метод РОР (Е=1.7 МэВ, θ ₁ =0º, θ ₂ =20º, θ=160º) и компьютерные моделирующие программы RUMP
Смачивание поверхности	метод покоящейся капли (программы Angle для определения РКУС)

Экспериментальные условия

Твердая фаза	БЗ фольги сплавов Al -In
Жидкая фаза	Дистиллированная вода V _{капли} =0,05 мл
Температура воздуха	18 ⁰ C
Поверхности фольг	А- прилегающая к цилиндру Б- с воздушной стороны
Время стабилизации	60 c

Установка для измерения РКУС

Процедура определения краевого угла смачивания

Измерение краевого угла смачивания

11

ФВЗЧК'2014

Атомно – силовой микроскоп NT-206

(Установка для получения изображения топографии и определения шероховатости поверхности)

Сканирующий атомно-силовой микроскоп (AFM)

Результаты измерения краевых углов смачивания и шероховатости поверхности для БЗ образцов

	Значение шероховатости поверхности, нм		РКУС, град		Отношение полной площади выбранной области к ее проективной площади	
Поверхность анализа	А	Б	А	Б	А	Б
Al – 0,35 ат. % In	25.1	98.6	78.5	40.5	1.0	1.0
Al – 0,7 ат. % In	31.1	72.8	57.4	62.5	0.9	1.0
Al – 1,4 ат. % In	17.2	56.7	65.2	55.2	1.0	0.9
Al – 4,7 ат. % In	24,6	17.0	47.2	35.8	1.0	1.0

Микроструктура фольг сплавов алюминия на примере Al-0,4 ат. % In

Мелкоячеистая; Распределение **In** <u>по границам зерен</u>;

Обсуждение значений шероховатости (поверхности А)

Рис. 1 а, б Морфология фольг сплава AI- 0,35 ат.% In

Обсуждение значений шероховатости (поверхности А)

Рис. 2 а, б Морфология фольг сплава AI- 0,7 ат.% In

Обсуждение значений шероховатости (поверхности А)

Рис. 3 а, б Морфология фольг сплава AI- 1,4 ат.% In

Обсуждение значений шероховатости (поверхности А)

Рис. 4 а, б Морфология фольг сплава AI- 4,7 ат.% In

Обсуждение значений шероховатости (поверхности Б)

Рис. 5 а, б Морфология фольг сплава AI- 0,35 ат.% In

Обсуждение значений шероховатости (поверхности Б)

Рис. 6 а, б Морфология фольг сплава AI- 0,7 ат.% In

Обсуждение значений шероховатости (поверхности Б)

Рис. 7 а, б Морфология фольг сплава AI- 1,4 ат.% In

Обсуждение значений шероховатости (поверхности Б)

Рис. 8 а, б Морфология фольг сплава AI- 4,7 ат.% In

Поверхность А

80,0 70,0 60,0 50,0 40,0 Шероховатость, нм 30,0 Краевой угол смачивания,град 20,0 10,0 0,0 Al-0,7 Al-1,4 Al-4,7 Al-0,35 ат.% In In In Поверхность Б In

Шероховатость, нм

• Краевой угол смачивания,град

ФВЗЧК'2014

Результаты и их обсуждение

Рис. 1 а, б Морфология фольг чистого алюминия

//Поверхность, рентгеновские, синхротронные и нейтронные исследования . – 2010. - № 7. – С.105-112.