ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКОГО МЕТОДА ПРИ РЕШЕНИИ УРАВНЕНИЙ И НЕРАВЕНСТВ

График функции дает наглядное представление о ее свойствах. Отсюда следует большое образовательное и практическое значение графиков при обучении математике в средней школе. Свободное владение техникой построения графиков часто помогает решать многие задачи, и порой является единственным средством их решения. Кроме того, умение строить графики функций представляет большой самостоятельный интерес.

Предлагаемая вашему вниманию статья и посвящена вопросу использования графического метода при решении уравнений и неравенств с параметрами.

Графическая иллюстрация часто помогает дать некоторые качественные ответы – найти, например, число корней уравнения, грубо указать на числовой оси, где они могут находиться, и т.п. даже в том случае, когда дать для них точную формулу трудно или вообще невозможно. Применение графиков во многих случаях облегчает решение уравнений и неравенств, обеспечивает наглядность, сознательность и прочность усвоения материала, а также является хорошим средством для предупреждения формализма в знаниях учащихся.

Напомним идею графического метода.

Рассмотрим уравнение с одним неизвестным $f_1(x) = f_2(x)$. Построим в одной и той же прямоугольной декартовой системе координат графики функций $y = f_1(x)$ и $y = f_2(x)$. Точки пересечения графиков этих функций соответствуют тем значениям аргумента x, при которых совпадают значения функций, т.е. решениям (корням) уравнения.

Таким образом, абсциссы точек пересечения графиков функций $y=f_1(x)$ и $y=f_2(x)$ являются корнями уравнения $f_1(x)=f_2(x)$.

Для эффективного использования графического метода необходимо знать основные элементарные функции, их свойства и графики, владеть основными методами построения графиков, опирающимися на простейшие приемы. Вспомним простейшие преобразования графиков функций.

Пусть y = f(x) — одна из основных функций, и ее график построен.

Под преобразованием графика функции y = f(x) будем подразумевать построение графика функции

a)
$$y = f(x) + c$$
, $y = f(x+c)$,
 $y = f(x)$, $y = f(x+c)$,

B)
$$y = k f(x), y = f(kx),$$
 $y = |f(x)|, y = |f(x)|, y = |f(x)|$

на основе уже имеющегося (построенного) графика функции y = f(x).

- 1. Чтобы построить график функции y = f(x) + c, где c = const, можно:
- а) график функции y = f(x) сдвинуть вдоль оси Oy на |c| единиц масштаба в сторону, совпадающую со знаком c ;
- б) перенести параллельно ось Ox на |c| единиц масштаба в сторону, противоположную знаку c .
 - 2. Чтобы построить график функции y = f(x+c), где c = const, можно:
- а) график функции y = f(x) сдвинуть вдоль оси Ox на |c| единиц масштаба в сторону, противоположную знаку c ;
- б) перенести параллельно ось $\mathit{Oy}\,$ на $|c|\,$ единиц масштаба в сторону, совпадающую со знаком c .
- 3. График функции y = -f(x) симметричен графику функции y = f(x) относительно оси Ox .
- 4. График функции y = f(-x) симметричен графику функции y = f(x) относительно оси Oy .
- 5. График функции $y = k \ f(x) \ (k > 0)$ получается из графика функции y = f(x) «растяжением» от оси Ox в k раз при k > 1 и «сжатием» к оси Ox в $\frac{1}{k}$ раз при 0 < k < 1.
- 6. График функции y = f(kx) (k > 0) получается из графика функции y = f(x) «сжатием» к оси Oy в k раз при k > 1 и «растяжением» от оси Oy в $\frac{1}{k}$ раз при 0 < k < 1.
- 7. График функции y = f(|x|) получается из графика функции y = f(x) следующим образом: для $x \ge 0$ сохраняется график функции y = f(x), затем эта оставленная часть графика отображается симметрично относительно оси Oy, определяя график функции для $x \le 0$.
- 8. График функции y = |f(x)| получается из графика функции y = f(x) следующим образом: часть графика функции y = f(x), лежащая над осью Ox или на оси Ox, остается без изменения; часть графика, лежащая под осью Ox, симметрично отображается относительно оси Ox.
 - 9. y = |f(|x|)|. Данную функцию можно рассматривать как совокупность двух функций

$$y = \begin{bmatrix} f(|x|), \text{где } f(|x|) \ge 0, \\ -f(|x|), \text{где } f(|x|) < 0. \end{bmatrix}$$

Чтобы построить график функции $y = \left| f(|x|) \right|$, достаточно построить график функции y = f(|x|), и ту часть графика, которая расположена в нижней полуплоскости, симметрично отобразить относительно оси Ox.

Весьма эффективен графический метод решения задач, содержащих модули. В таких задачах присутствуют выражения вида y = |x|, y = |x| + a, y = |x + a|, |y| = x, |y| = x + a, |y| = |x|. Графики этих выражений представляют собой или отдельные «уголки» с вершиной на одной из координатных осей или совокупности «уголков», вершины которых находятся на обеих координатных осях. Во всех случаях можно найти прямоугольные треугольники, образованные частями указанных графиков с осями Ox и Oy. Это дает возможность найти координаты точек, рассматривая прямоугольные равнобедренные треугольники. Такой подход — лучшая иллюстрация соединения алгебры с геометрией.

При решении других задач с параметрами также удобно пользоваться геометрическими интерпретациями. Бывает удобно изображать графики функций, входящих в левые и правые части рассматриваемых уравнений (неравенств). При решении систем уравнений или неравенств, аналогично, можно изображать геометрические места точек плоскости, удовлетворяющих рассматриваемым уравнениям или неравенствам. Это зачастую позволяет существенно упростить анализ задач, а в ряде случаев представляет собой единственный «ключ» к решению. Решение задачи становится наглядным и гораздо более «прозрачным».

Покажем на примерах целесообразность применения графиков при решении уравнений и неравенств.

Пример 1. Решите уравнение |x-a| = |x-6| [1].

Решение. Строим графики функций y = |x - a| и y = |x - 6| (рис. 1).

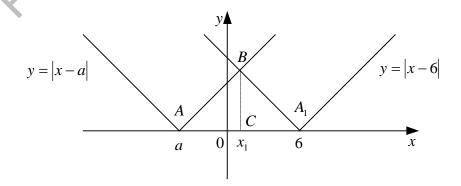


Рисунок 1

На плоскости xOy начнем двигать вдоль оси Ox слева направо «угол» y = |x - a|. Возможны два случая: а) построенные графики совпадают; б) не совпадают.

Пусть графики функций y = |x - a| и y = |x - 6| совпадают. Это означает, что a = 6, и решением уравнения служит вся числовая ось, т.е. $x \in (-\infty; +\infty)$.

Пусть графики функций $y=\left|x-a\right|$ и $y=\left|x-6\right|$ не совпадают. Рассмотрим треугольник ABA_1 . Он прямоугольный равнобедренный, поэтому точка C – середина отрезка AA_1 . Абсцисса x_1 точки C вычисляется по формуле: $x_1=\frac{a+6}{2}$.

Ответ. Если a = 6, то $x \in (-\infty; +\infty)$; если $a \ne 6$, то $x = \frac{a+6}{2}$.

Пример 2. При каких значениях параметра m уравнение $|x^2 - 6x| = m$ имеет ровно три решения?

Решение. Построим график функции $y = |x^2 - 6x|$ (рис. 2).

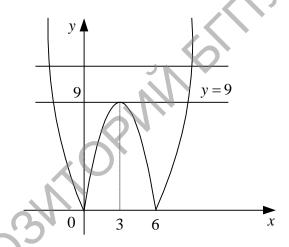


Рисунок 2

Проводим горизонтали y=m при различных значениях m . Получаем, что при m=9 горизонталь y=9 пересекает график функции $y=\left|x^2-6x\right|$ в трех точках.

Oтвет. m = 9.

Пример 3. При каких значениях параметра a сумма целых корней уравнения |x-5|+|x-8|=a равна 26?

Решение. Построим график функции y = |x-5| + |x-8| . Для этого запишем функцию по-

другому
$$y = \begin{cases} -2x+13, \text{ если } x < 5, \\ 3, \text{ если } 5 \le x < 8, \\ 2x-13, \text{ если } x \ge 8. \end{cases}$$

Результат построения графика изображен на рисунке 3.

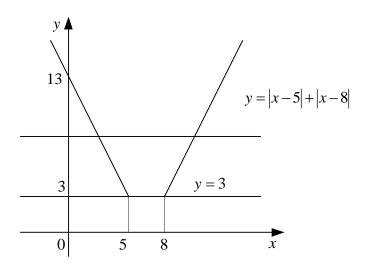


Рисунок 3

Проводим горизонтали y = a при различных значениях a.

При a=3 получим, что уравнение |x-5|+|x-8|=3 имеет решения $x \in [5;8]$. Целые значения x этого отрезка: x=5, x=6, x=7, x=8, их сумма равна 26.

Если a>3, то прямая y=a пересекает график функции в двух точках, симметричных относительно прямой x=6,5. Для одной из них (с абсциссой x_1) выполняется соотношение $y_1=-2x_1+13$, для другой (с абсциссой x_2) — соотношение $y_2=2x_2-13$. Но $y_1=y_2$, $-2x_1+13=2x_2-13$, $x_1+x_2=13$, то есть при любом a>3 сумма решений уравнения всегда будет равна 13. Значит, подходит только a=3.

Ответ. a = 3.

Пример 4. (XIX Межрегиональная олимпиада школьников России по математике и криптографии.) Найдите число решений системы уравнений

$$\begin{cases} x + |y| = 1, \\ y + a|x| = 2 \end{cases}$$

при всех возможных значениях параметра a.

Решение. Приведем геометрическое решение данной задачи.

1. Рассмотрим графики уравнений исходной системы при a > 0 (рис. 4). Отсюда видно, что при a > 0 система может иметь одно, два, три или четыре решения.

Ровно три решения система имеет при тех a>0, при которых луч y=2-ax, x>0, проходит через точку B(1;0), то есть при a=2.

При a > 2 луч y = 2 - ax, x > 0, пересекает линию |y| = 1 - x в двух точках. Поэтому в данном случае система имеет ровно четыре решения.

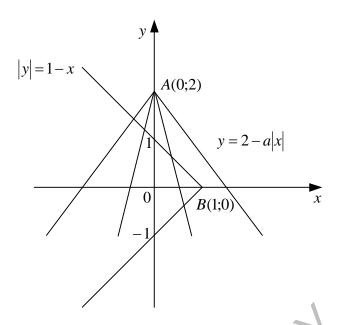


Рисунок 4

При 0 < a < 2 луч y = 2 - ax, x > 0, не пересекает линию |y| = 1 - x. Поэтому в данном случае система имеет одно или два решения. Два решения получаются пересечением луча y = 2 - a|x|, x < 0, и линии |y| = 1 - x в двух точках. Это может быть, если луч y = 2 - a|x|, x < 0, имеет угловой коэффициент (который равен a) больший, чем 1.

Итак, при 1 < a < 2 система имеет ровно два решения. Если же $0 < a \le 1$, то система имеет одно решение.

2. Рассмотрим графики уравнений исходной системы при a < 0 (рис. 5).

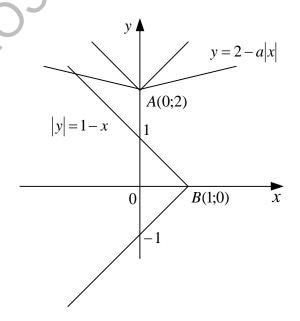


Рисунок 5

Отсюда видно, что при a < 0 система может не иметь решения или иметь одно решение.

Система не имеет решений при тех a<0, при которых луч y=2-a|x|, x<0, не пересекает линию |y|=1-x, то есть при $a\leq -1$.

При -1 < a < 0 луч y = 2 - a|x|, x < 0, пересекает линию |y| = 1 - x ровно в одной точке. Поэтому в данном случае система имеет ровно одно решение.

3. При a = 0 система, очевидно, имеет ровно одно решение, а именно (-1;2).

Ответ. При $a \le -1$ – нет решений; при $-1 < a \le 1$ – одно решение; при 1 < a < 2 – два решения; при a = 2 – три решения; при a > 2 – четыре решения.

Пример 5. При каждом значении параметра *b* решите уравнение |x-3|+|x+13|=2x+b.

Решение. Перепишем данное уравнение в виде f(x) = 2x + b, где

$$f(x) = \left| x - 3 \right| + \left| x + 13 \right| = \begin{cases} 2x + 10, & x \ge 3, \\ 16, & -13 < x < 3, \quad \text{и решим его, использул график кусочно-линейной} \\ -2x - 10, & x \le -13, \end{cases}$$

функции y = f(x) (рис. 6).

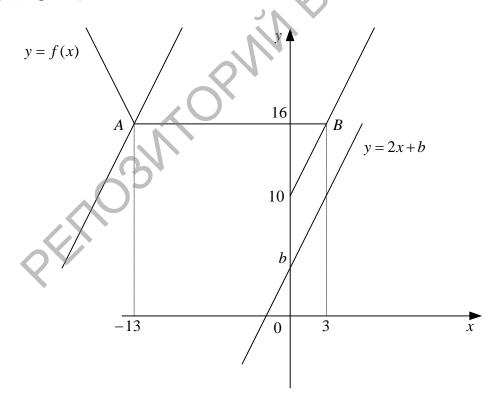


Рисунок 6

На этом графике точки излома имеют координаты A(-13;16), B(3;16). Найдем значения параметра b в уравнениях прямых y=2x+b, проходящих через эти точки:

$$16 = 2 \cdot (-13) + b$$
, откуда $b = 42$; $16 = 2 \cdot 3 + b$, откуда $b = 10$.

Таким образом, имеем: при b < 10 $x \in \emptyset$; при b = 10 $x \ge 3$; при 10 < b < 42 2x + b = 16, $x = \frac{16 - b}{2}$; при $b \ge 42$ 2x + b = -2x - 10, $x = -\frac{b + 10}{4}$.

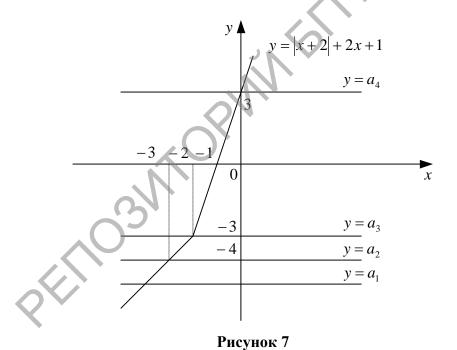
Omsem. Если $b\in (-\infty;10)$, то $x\in \varnothing$; если b=10, то $x\in [3;+\infty)$; если $b\in (10;42)$, то $x=\frac{16-b}{2}$; если $b\in [42;+\infty)$, то $x=-\frac{b+10}{4}$.

Пример 6. Для каждого значения параметра a найдите число корней уравнения

$$|x+2|+1=a-2x$$
.

Peшeнue. Перепишем уравнение в виде a = |x+2| + 2x + 1.

Для решения задачи определим количество точек пересечения графика функции y=|x+2|+2x+1 и прямой y=a. Построим график функции y=|x+2|+2x+1, который состоит из двух частей: при $x \ge -2$ y=3x+3; при x<-2 y=x-1 (рис. 7).



Из рисунка видно, что при любом значении параметра a исходное уравнение имеет один корень.

Ответ. При любом значении параметра а уравнение имеет один корень.

Пример 7. Найдите все значения k, при которых прямая y = kx пересекает в трех раз-

личных точках ломаную, заданную условием $y = \begin{cases} 2x + 4, \text{ если } x < -3, \\ -2, \text{ если } -3 \le x \le 3, \\ 2x - 8, \text{ если } x > 3. \end{cases}$

Решение. Построим ломаную (рис. 8), заданную условием $y = \begin{cases} 2x + 4, \text{ если } x < -3, \\ -2, \text{ если } -3 \le x \le 3, \\ 2x - 8, \text{ если } x > 3. \end{cases}$

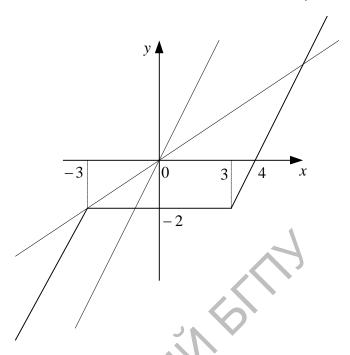


Рисунок 8

Прямая y=kx пересекает в трех различных точках эту ломаную, если ее угловой коэффициент больше углового коэффициента прямой, проходящей через точку (-3;-2), и меньше углового коэффициента прямой, параллельной прямым y=2x-8 и y=2x+4,

Найдем угловой коэффициент прямой, проходящей через точку (-3;-2): -2=-3k, $k=\frac{2}{3}$.

Угловой коэффициент k прямой, параллельной прямой y=2x-8, равен 2. Прямая y=kx имеет с ломаной три общие точки при $\frac{2}{3} < k < 2$.

Omsem. $k \in \left(\frac{2}{3}; 2\right)$.

Пример 8. При каких условиях уравнение |3-|x-2|=0 имеет четыре корня [2]? *Решение.* Рассмотрим два промежутка:

- 1) $(-\infty;2)$. На этом промежутке |3-|x-2||=|x+1|.
- 2) [2;+ ∞) . На этом промежутке |3-|x-2||=|5-x| .

Построим графики функций $y=\left|x+1\right|, x\in(-\infty;2)$, и $y=\left|5-x\right|, x\in[2;+\infty)$. В совокупности эти два графика дадут график функции $y=\left|3-\left|x-2\right|\right|$ (рис. 9).

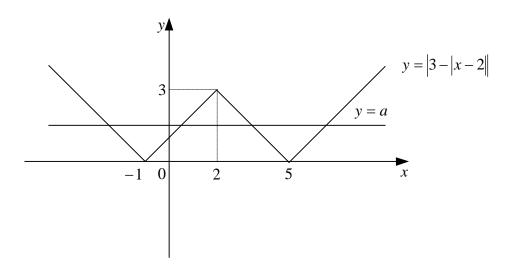


Рисунок 9

Исходное уравнение имеет четыре корня, если графики функций $y = \left| 3 - \left| x - 2 \right| \right|$ и y = a имеют четыре общие точки. Очевидно, 0 < a < 3.

Ombem. 0 < a < 3.

Пример 9. При каких условиях система уравнений $\begin{cases} |x| + |y| = 4, \\ x^2 + y^2 = a \end{cases}$ имеет четыре корня [2]?

Решение. Построим график уравнения |x| + |y| = 4 (рис. 10).

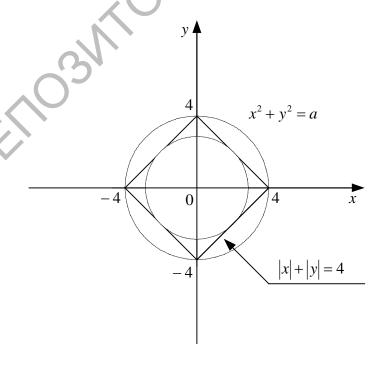


Рисунок 10

При построении этого графика надо использовать тот факт, что оси Ox и Oy являются осями симметрии, так как переменные x и y стоят под знаком модуля. Следовательно, доста-

точно построить часть графика в первой четверти координатной плоскости, а затем воспользоваться симметричностью.

В результате получим, что квадрат со стороной $4\sqrt{2}$ является графиком уравнения |x|+|y|=4 (рис. 10).

Графиком уравнения $x^2 + y^2 = a$ является окружность с центром в точке (0;0) и радиусом \sqrt{a} .

Исходная система уравнений имеет четыре решения, если графики уравнений |x|+|y|=4 и $x^2+y^2=a$ имеют четыре общие точки: 1) $\sqrt{a}=4, a=16$ (окружность описана около квадрата); 2) $\sqrt{a}=2\sqrt{2}, a=8$ (окружность вписана в квадрат).

Ответ. 8 или 16.

Пример 10. Найдите все значения параметра a, при которых неравенство

$$\cos x - 2\sqrt{x^2 + 9} \le -\frac{x^2 + 9}{a + \cos x} - a$$

имеет единственное решение [3].

Решение. Перенесем выражение, стоящее в правой части, в левую:

$$\cos x - 2\sqrt{x^2 + 9} + \frac{x^2 + 9}{a + \cos x} + a \le 0.$$

Приведем левую часть неравенства к общему знаменателю:

$$\frac{\cos^2 x + (x^2 + 9) + a^2 + 2a\cos x - 2a\sqrt{x^2 + 9} - 2\cos x\sqrt{x^2 + 9}}{a + \cos x} \le 0.$$

В числителе имеем полный квадрат трехчлена, т.е. $\frac{(\cos x + a - \sqrt{x^2 + 9})^2}{a + \cos x} \le 0$.

Для того чтобы последнее неравенство имело единственное решение, необходимо выполнение условия

$$(\cos x + a - \sqrt{x^2 + 9})^2 = 0$$
, или $\cos x + a = \sqrt{x^2 + 9}$.

Полученное уравнение решим графическим способом. Построим графики функций $y = \cos x + a$ и $y = \sqrt{x^2 + 9}$ (рис.11).

Уравнение имеет единственное решение, когда у графиков функций $y = \cos x + a$ и $y = \sqrt{x^2 + 9}$ есть только одна общая точка. Эта точка с координатами (0;3), т.е. a = 2.

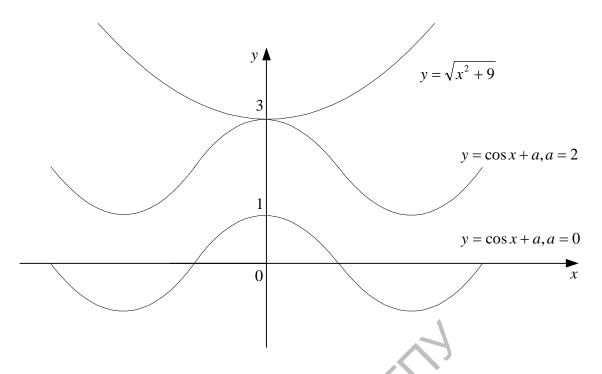
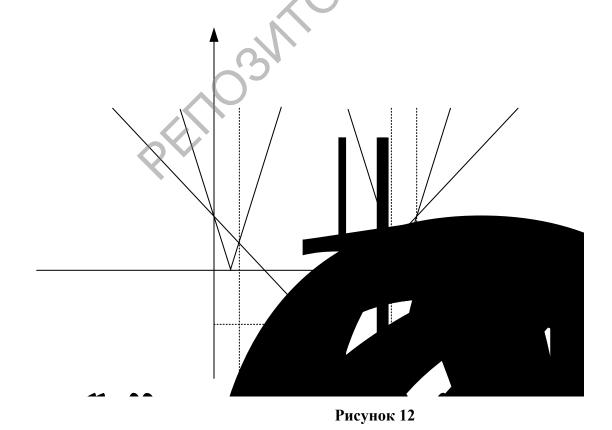


Рисунок 11

Ответ. a = 2.

Пример 11. Найдите все значения a, при каждом из которых решения неравенства $|3x-a|+2 \le |x-4|$ образуют отрезок длины 1.

Peшение. Преобразуем исходное неравенство к виду $|3x-a| \le |x-4|-2$.



Раскрывая модуль в выражении, стоящем в правой части неравенства, получим:

$$g(x) = |x - 4| - 2 = \begin{cases} x - 6, \text{ если } x \ge 4, \\ -x + 2, \text{ если } x < 4. \end{cases}$$

При каждом фиксированном значении параметра a график функции $y_a(x) = |3x - a|$ получается параллельным переносом графика функции y = |3x| вдоль оси Ox на $\frac{a}{3}$ единиц.

Решению исходного неравенства соответствуют все такие значения x, при которых точки плоскости Oxy с координатами (x;g(x)) расположены не ниже точек с координатами $(x;y_a(x))$. Из рисунка 12 видно, что решением исходного неравенства является отрезок, когда график функции $y_a(x)$ пересекает прямую y=x-6 при $x \ge 4$ или прямую y=-x+2 при $x \le 4$.

В первом случае абсциссы точек пересечения графиков функций получаются из решения уравнений $x-6=3x-a_1$ и $x-6=-3x+a_1$. Отсюда получаем $x=\frac{a_1-6}{2}$ и $x=\frac{a_1+6}{4}$. В этом случае длина отрезка равна $\frac{a_1-6}{2}-\frac{a_1+6}{4}=\frac{a_1-18}{4}$. Соответственно, длина равна 1 при $a_1=22$.

Во втором случае абсциссы точек пересечения графиков функций получаются из решения уравнений $-x+2=3x-a_2$ и $-x+2=-3x+a_2$. Отсюда получаем $x=\frac{2+a_2}{4}$ и $x=\frac{a_2-2}{2}$. В этом случае длина отрезка равна $\frac{2+a_2}{4}-\frac{a_2-2}{2}=\frac{6-a_2}{4}$. Следовательно, длина отрезка равна 1 при $a_2=2$.

Ответ. 2:22

Упражнения для самостоятельного решения

- 1. При каких значениях параметра p . уравнение $x^2-4|x|+2=p$ имеет ровно три решения?
 - 2. Для каждого значения параметра a решите уравнение 2|x|+|x-1|=a .
- 3. При каких значениях параметра a число корней уравнения $||x^2 2x| 7| = a$ в четыре раза больше a?
 - 4. При каких значениях параметра a число корней уравнения $|x^2 8|x| + 7| = a$ равно a?
 - 5. При каких значениях параметра a уравнение $\left| x^2 + 4x \right| = a$ имеет 4 решения?

- 6. При каких значениях параметра a система уравнений $\begin{cases} x^2 + y^2 = a, \\ |x| + |y| = 3 \end{cases}$ имеет 8 решений, 4 решения, не имеет решений?
- 7. Найдите наибольшее значение параметра a , при котором система $\begin{cases} x^2-6x+y^2+9+2y\leq 0,\\ x^2+y^2+2x-4y=a \end{cases}$ имеет решения.
 - 8. Решите для всех значений параметра a уравнение |x+3|-a|x-1|=4.
 - 9. Решите при всех значениях параметра a систему уравнений $\begin{cases} y = 1 x, \\ |x| + |y| = a. \end{cases}$
- 10. Найдите все значения a, при каждом из которых график функции $f(x) = x^2 \left| x^2 + 2x 3 \right| a$ пересекает ось абсцисс более чем в двух различных точках.
- 11. Найдите все значения a, при каждом из которых решения неравенства $|2x-a|+1 \le |x+3|$ образуют отрезок длины 1.

Список использованной литературы

- 1. Ильина, С.Д. Графические решения уравнений, содержащих знак модуля / С.Д. Ильина // Математика в школе.— 2001.— № 8.— С.33-34.
- 2. Веременюк, В.В. Математика: учимся быстро решать тесты: пособие для подготовки к тестированию и экзамену / В.В. Веременюк, Е.А. Крушевский, И.Д. Беганская, Мн.: ТетраСистемс, 2005.—144 с.
- 3. Хабибуллин, К.Я. Стандартный прием в нестандартных задачах / К.Я. Хабибуллин // Математика в школе. 2000. № 8. С. 14-15.
- 4. Черкасов, О.Ю. Математика для поступающих в серьезные вузы / О. Ю. Черкасов, А.Г. Якушев.— М.: Московский Лицей, 1998.— 400 с.