А. Н. ЛАВРЁНОВ, И. А. ЛАВРЁНОВ

МАТРИЦА ПЕРЕХОДА МЕЖДУ БАЗИСАМИ, ОБРАЗОВАННЫМИ ИЗ ОБОБЩЕННЫХ МАТРИЦ ГЕЛЛ-МАННА

The generalized Gell-Mann matrix (GGMM) basis for the dimensions d = 4 and d = 6 is considered in this article. The transition matrix between all discussed GGMM basis was found.

Хорошо известно, что любая матрица $A \in M_d(C)$ может быть единственным образом разложена по различным базисам $M_d(C)$, например Γ_a и Γ_b , обычно связанным с определенными симметриями. Определение коэффициентов связи $C_{\alpha\beta}$ (матрицы перехода) между этими базисами представляет собой проблему теоретической и практической ценности: $\Gamma_{\alpha} = \sum_{\alpha} C_{\alpha\beta} \Gamma_{\beta}$ [1, 2].

Целью данной работы является нахождение явной формы $C_{\alpha\beta}$ для матриц размерности $d \times d$, где d = 4 и d = 6. В дальнейшем будут рассматриваться только базисы, которые образованы обобщенными матрицами Гелл-Манна (ОМГ).

1. Предварительные сведения

Размерность пространства $M_d(C)$ равна $d^2 = d(d-1)/2 + d(d-1)/2 + d$. В последнем равенстве показано в явном виде разбиение базиса ОМГ на три типа матриц [2]:

симметричные ОМГ – $\Lambda_s^{jk} = E_{jk} + E_{kj}$, $1 \le j < k \le d$;

антисимметричные ОМГ
$$-\Lambda_a^{jk} = -i(E_{jk} - E_{kj}), \ 1 \le j < k \le d;$$
 диагональные ОМГ $-\Lambda_0 = \mathrm{I}_d$; $\Lambda^l = \sqrt{\frac{2}{l(l-1)}}(\sum_{j=1}^{j=l} E_{j,j} - lE_{l+1,l+1}), \ 1 \le l \le d-1,$ е E_{jk} — матрица с ненулевым, равным 1, значением только для элем

где $E_{{\it jk}}$ — матрица с ненулевым, равным 1, значением только для элемента матрицы, стоящего на пересечении j-строки и k-столбца; I_d – единичная матрица порядка d.

Для сквозной нумерации одним индексом α упорядочим базис ОМГ размерности d^2 следующим образом:

$$\Gamma_{\alpha}^{d} = (\Lambda_{0}, \Lambda_{s}^{jk}, \Lambda_{a}^{jk}, \Lambda^{l}), \quad 0 \le \alpha \le d^{2} - 1.$$

$$\tag{1}$$

Порядок следования в классе (анти)симметричных матриц выберем естественным, т. е. вначале он определяется ростом последней переменной k, а затем уже первой переменной j.

Хотя базис $OM\Gamma$ размерности d^2 можно определить для любого значения d, но в практических целях удобно работать с его малыми значениями. Поэтому при $d=d_1d_2$ образуем базис путем тензорного произведения базисов ОМГ размерностей d_1^2 и d_2^2 . Символически это можно записать как $\Gamma_{\alpha}^{d=d_1d_2}=(\Gamma_{\alpha_1}^{d_1}\otimes\Gamma_{\alpha_2}^{d_2})$. Из-за некоммутативности тензорного произведения для случая $d_1\neq d_2$ существуют два таких различных базиса $\Gamma_{\alpha}^{d=d_1d_2} = (\Gamma_{\alpha_1}^{d_1} \otimes \Gamma_{\alpha_2}^{d_2}) \neq \Gamma_{\alpha'}^{d=d_2d_1} = (\Gamma_{\alpha_2}^{d_2} \otimes \Gamma_{\alpha_1}^{d_1}).$

2. Случай d = 4

Для данного значения d=4 имеем $d_1=d_2=2$ и только два искомых базиса. Один базис определя-

ется в явной форме в соответствии с (1) как
$$\Gamma_{\alpha_1}^{d=4} = (I_4, \Lambda_s^{12}, \Lambda_s^{13}, \Lambda_s^{14}, \Lambda_s^{23}, \Lambda_s^{24}, \Lambda_s^{34}, \Lambda_a^{12}, \Lambda_a^{13}, \Lambda_a^{14}, \Lambda_a^{23}, \Lambda_a^{24}, \Lambda_a^{34}, \Lambda_a^{1}, \Lambda_a^{1}, \Lambda_a^{2}, \Lambda_a^{34}, \Lambda_a^{1}, \Lambda_a^{1}, \Lambda_a^{2}, \Lambda_a^{34}, \Lambda_a^{1}, \Lambda$$

В работе [2] можно найти явный вид всех указанных матриц. Для определения второго базиса необходим базис ОМГ размерности 2^2 , который хорошо известен как базис матриц Паули $\sigma_m[2, 3]$. Поэтому приведем в явной форме как базис матриц Паули

$$\Gamma_m^{d=2} = (I_2, \Lambda_s^{12}, \Lambda_a^{12}, \Lambda^1) = (I_2, \sigma_1, \sigma_2, \sigma_3) = (I_2, \sigma_n) = (\sigma_m), \quad 0 \le m \le 3; \quad 1 \le n \le 3,$$

так и искомый второй базис

$$\Gamma_{\beta_1}^{d=2\times 2} = (I_2 \otimes I_2, I_2 \otimes \sigma_n, \sigma_1 \otimes I_2, \sigma_1 \otimes \sigma_n, \sigma_2 \otimes I_2, \sigma_2 \otimes \sigma_n, \sigma_3 \otimes I_2, \sigma_3 \otimes \sigma_n)$$

$$\Gamma_{\beta_1}^{d=2\times 2} = (I_2 \otimes \sigma_{m_2}, \sigma_1 \otimes \sigma_{m_2}, \sigma_2 \otimes \sigma_{m_2}, \sigma_3 \otimes \sigma_{m_2}) = (\sigma_{m_1} \otimes \sigma_{m_2}),$$

где $0 \le \beta_1 \le 15$; $0 \le m_1 \le 3$; $0 \le m_2 \le 3$; $1 \le n \le 3$.

Теорема 1. Пусть даны 2 базиса $\Gamma_{\alpha_1} = \Gamma_{\alpha_1}^{d=4}$ и $\Gamma_{\beta_1} = \Gamma_{\beta_1}^{d=2\times 2}$. Тогда ненулевые значения матрицы перехода C_{α,β_1} даются в виде табл. 1.

Таблица 1

Матрица перехода $C_{\alpha_1 \beta_1}$ для d=4

Значение $C_{\alpha_{l}\beta_{l}}$	Значение пары индексов (α_1, β_1)	Значение $C_{lpha_{i}eta_{i}}$	Значение пары индексов (α_1, β_1)
		$\frac{-2}{\sqrt{6}}$	(4,15), (5,15)
1	(0,0), (1,1), (1,5), (2,1), (2,5), (3,13), (4,2), (4,5), (5,3), (5,4), (6,3), (7,2), (8,2), (8,5), (9,3), (9,4), (10,4), (11,2)	$\frac{-1}{\sqrt{3}}$	(4,14)
	(5,4), (6,3), (7,2), (8,2), (8,5), (9,3), (9,4), (10,4), (11,2), (13,1), (14,1), (15,13)	$\frac{1}{\sqrt{3}}$	(15,14)
		$\frac{-4}{\sqrt{6}}$	(12,15)
-1	(6,4), (7,5), (10,3), (11,5), (13,6), (14,6)	$\frac{2}{\sqrt{3}}$	(12,14)

3. Случай d = 6

Для данного значения d=6 имеем $d_1=2(3)$, $d_2=3(2)$ и три искомых базиса, два из которых имеют вид: $\Gamma^{d=2\times 3}_{\alpha_2}=(\Gamma^2_{m_1}\otimes\Gamma^3_{\mu_1})$ и $\Gamma^{d=3\times 2}_{\beta_2}=(\Gamma^3_{\mu_1}\otimes\Gamma^2_{m_1})$. Для их определения необходимы базисы ОМГ размерностей 2^2 (базис матриц Паули σ_m) и 3^2 . Последний базис также хорошо известен как базис матриц Гелл-Манна λ_μ [2, 3]. Учитывая, что наше упорядочение матриц не совпадает с общепринятой нумерацией λ_μ , введем новые матрицы π_μ :

Телл-Манна
$$\lambda_{\mu}$$
 [2, 3]. Учитывая, что наше упорядочение матриц не совпадает с общег рацией λ_{μ} , введем новые матрицы π_{μ} :
$$\Gamma_{\mu}^{d=3} = (I_3, \Lambda_s^{12}, \Lambda_s^{13}, \Lambda_s^{23}, \Lambda_a^{12}, \Lambda_a^{13}, \Lambda_a^{23}, \Lambda^1, \Lambda^2) = (I_3, \lambda_1, \lambda_4, \lambda_6, \lambda_2, \lambda_5, \lambda_7, \lambda_3, \lambda_8)$$
 или
$$\Gamma_{\mu}^{d=3} = (I_3, \pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6, \pi_7, \pi_8) = (I_3, \pi_v) = (\pi_{\mu}), \quad 0 \le \mu \le 8 \text{ и } 1 \le v \le 8.$$

Это позволяет компактно представить в явной форме рассматриваемые базисы:

$$\Gamma_{\alpha_2}^{d=2\times3} = (I_2\otimes I_3, I_2\otimes \pi_{\rm v}, \sigma_{\rm l}\otimes I_3, \sigma_{\rm l}\otimes \pi_{\rm v}, \sigma_{\rm 2}\otimes I_3, \sigma_{\rm 2}\otimes \pi_{\rm v}, \sigma_{\rm 3}\otimes I_3, \sigma_{\rm 3}\otimes \pi_{\rm v})$$
 или $\Gamma_{\alpha_2}^{d=2\times3} = (\sigma_{\rm m}\otimes \pi_{\rm \mu}),$
$$\Gamma_{\beta_2}^{d=3\times2} = (I_3\otimes I_2, I_3\otimes \sigma_{\rm n}, \pi_{\rm l}\otimes I_2, \pi_{\rm l}\otimes \sigma_{\rm n}, \ldots, \pi_{\rm 8}\otimes I_2, \pi_{\rm 8}\otimes \sigma_{\rm n})$$
 или $\Gamma_{\beta_2}^{d=3\times2} = (\pi_{\rm \mu}\otimes \sigma_{\rm m}),$

где $0 \le \alpha_2 \le 35$; $0 \le \beta_2 \le 35$; $0 \le \mu \le 8$; $1 \le \nu \le 8$; $0 \le m \le 3$ и $1 \le n \le 3$.

Теорема 2. Пусть даны 2 базиса $\Gamma_{\alpha_2} = \Gamma_{\alpha_2}^{d=2\times3}$ и $\Gamma_{\beta_2} = \Gamma_{\beta_2}^{d=2\times3}$. Тогда ненулевые значения матрицы перехода $C_{\alpha,\beta,}$ даются в виде табл. 2.

Таблица 2

Матрица перехода $C_{\alpha,\beta}$, для d=6

Значение $C_{\alpha_2\beta_2}$	Значение пары индексов (α_2 , β_2)		
$\frac{1}{2}$	(1,13), (1,26), (1,29), (2,4), (2,7), (2,12), (3,5), (3,18), (4,25), (4,30), (5,16), (5,19), (5,24), (6,17), (9,5), (9,9), (9,13), (9,22), (10,4), (10,7), (10,8), (11,9), (12,8), (12,12), (12,15), (13,19), (13,20), (13,23), (14,10), (14,21), (14,30), (15,20), (16,5), (18,6), (18,14), (18,17), (18,21), (19,16), (19,20), (19,23), (20,10), (20,21), (21,20), (21,24), (21,27), (22,4), (23,22), (24,11), (24,12), (24,15), (25,6), (25,10), (25,17), (26,17), (26,21), (27,28), (28,29), (29,4), (29,7), (29,15), (30,5), (30,18), (31,14), (31,30), (32,16), (32,19), (32,27), (33,17)		
$-\frac{1}{2}$	(2,15), (4,14), (5,27), (6,6), (7,28), (9,18), (9,26), (10,11), (11,22), (11,29), (12,11), (13,16), (15,23), (15,24), (15,27), (16,9), (16,18), (16,22), (18,10), (18,25), (19,19), (20,30), (21,23), (22,7), (22,8), (22,11), (23,9), (23,29), (24,8), (25,21), (27,31), (28,13), (28,26), (29,12), (31,25), (32,24), (33,6)		

Окончание

Таблица 3

Значение $C_{\alpha_2\beta_2}$	Значение пары индексов (α2, β2)	Значение $C_{\alpha_2\beta_2}$	Значение пары индексов (α_2 , β_2)
1/3	(1,1), (3,1), (4,2), (6,2), (11,1), (20,2), (23,1), (27,3), (28,1), (31,2)	$\frac{1}{2\sqrt{3}}$	(1,33), (4,34), (11,33), (17,5), (17,9), (17,22), (20,34), (23,33), (26,6), (27,35), (28,33), (31,34)
$-\frac{1}{\sqrt{3}}$	(3,33), (6,34), (26,14), (26,25)	$\frac{\sqrt{3}}{2}$	(7,32), (7,35), (27,32)
$\frac{\sqrt{3}}{2}$	(8,28), (8,31)	$\frac{1}{4}$	(8,32), (34,28), (34,31)
$-\frac{1}{2\sqrt{3}}$	(14,34), (17,18), (26,10)	$-\frac{1}{3}$	(14,2), (30,1), (33,2)
$\frac{\frac{1}{\sqrt{3}}}{\frac{5}{4\sqrt{3}}}$	(17,26), (30,33), (33,34)	$\frac{1}{4\sqrt{3}}$	(34,35), (35,31), (33,2)
$\frac{5}{4\sqrt{3}}$	(35,28)	$-\frac{2}{3\sqrt{3}}$	(35,3)
1	(0,0)	$\frac{3}{2}$	(7,31)
$-\frac{3}{4}$	(8,35)	$-\frac{\sqrt{3}}{4}$	(34,32)
$-\frac{1}{4}$	(35,32)	5 12	(35,35)
$\frac{2}{3}$	(34,3)	_	

Для полноты нашего исследования рассмотрим третий базис — базис ОМГ размерности 6^2 .

Представим его в явном виде согласно (1):
$$\Gamma_{\beta_3}^{d=6} = (I_6, \Lambda_s^{12}, ..., \Lambda_s^{16}, \Lambda_s^{23}, ..., \Lambda_s^{26}, ..., \Lambda_s^{45}, \Lambda_s^{46}, \Lambda_s^{56}, \Lambda_a^{12}, ..., \Lambda_a^{16}, ..., \Lambda_a^{56}, \Lambda^1, \Lambda^2, \Lambda^3, \Lambda^4, \Lambda^5),$$
 где $0 \le \beta_3 \le 35$.

Теорема 3. Пусть даны 2 базиса $\Gamma_{\alpha_3} = \Gamma_{\alpha_3}^{d=3\times 2}$ и $\Gamma_{\beta_3} = \Gamma_{\beta_3}^{d=6}$. Тогда ненулевые значения матрицы регода C даржев в сида таба. перехода $C_{\alpha_3\beta_3}$ даются в виде табл. 3.

Матрица перехода $\,C_{lpha_3eta_3}\,$ для $\it d=6$

Значение C_{α,β_3}	Значение пары индексов (α_3 , β_3)			
1	(0,0), (1,1), (1,10), (1,15), (2,16), (2,25), (2,30), (3,31), (4,2), (4,7), (5,3), (5,6), (6,3), (7,2), (8,4), (8,9), (9,5), (9,8), (10,5), (11,4), (12,11), (12,14), (13,12), (13,13), (14,12), (15,11), (16,17), (16,22), (17,18), (17,21), (18,21), (19,17), (20,19), (20,24), (21,20), (21,23), (22,23), (23,19), (24,26), (24,29), (25,27), (25,28), (26,28), (27,26), (29,1), (30,16), (31,31)			
-1	(6,6), (7,7), (10,8), (11,9), (14,13), (15,14), (18,18), (19,22), (22,20), (23,24), (26,27), (27,29), (29,10), (30,25)			
Значение $C_{\alpha_3\beta_3}$	Значение пары индексов (α_3 , β_3)	Значение C_{α,β_3}	Значение пары индексов (α_3 , β_3)	
$\frac{1}{\sqrt{3}}$	(31,32), (33,1), (33,10), (34,16), (34,25), (35,31)	$-\frac{2}{\sqrt{3}}$	(3,32), (33,15), (34,30)	
$\frac{4}{\sqrt{6}}$	(3,33)	$-\frac{2}{5}$	(3,34)	
$\frac{6}{\sqrt{15}}$	(3,35)	$\frac{2}{\sqrt{3}}$	(28,32)	
$\frac{2}{\sqrt{6}}$	(28,33)	$\frac{6}{\sqrt{30}}$	(32,34)	
$\frac{2}{\sqrt{5}}$	(32,35)	$\frac{-2}{\sqrt{6}}$	(31,33)	
$-\frac{1}{3}$	(35,32)	$\frac{2}{3\sqrt{2}}$	(35,33)	
$\frac{4}{\sqrt{30}}$	(35,34)	$-\frac{2}{\sqrt{5}}$	(35,35)	

Доказательства теорем идентичны и основаны на применении следующих свойств ОМГ и тензорного произведения:

$$\operatorname{Tr}(\Gamma_i \Gamma_i) = 2\delta_{ij}; \operatorname{Tr}(\Gamma_i) = 0; \operatorname{Tr}(A \otimes B) = \operatorname{Tr}(A)\operatorname{Tr}(B).$$

Например, коэффициенты $C_{\alpha\beta}$ можно найти следующим образом:

$$\operatorname{Tr}(\Gamma_{\beta}\Gamma_{\alpha}) = \operatorname{Tr}\left(\Gamma_{\beta}\sum_{\gamma}C_{\alpha\gamma}\Gamma_{\gamma}\right) = \sum_{\gamma}C_{\alpha\gamma}\operatorname{Tr}\left(\Gamma_{\beta}\Gamma_{\gamma}\right) = \sum_{\gamma}C_{\alpha\gamma}2\delta_{\beta\gamma} = 2C_{\alpha\beta}.$$

Представляет интерес обобщение полученного результата на другие размерности.

- 1. Прескилл Дж. Квантовая информация и квантовые вычисления. М.; Ижевск, 2008. Т. 1.
- 2. Bertlmann R. A., Krammer P. // J. of Physics A: Mathematical and Theoretical. 2008. Vol. 41. Iss. 23. P. 235303.
- 3. Пилькун Х. Физика релятивистских частиц. М., 1983.

Поступила в редакцию 09.09.11.

Александр Николаевич Лаврёнов – кандидат физико-математических наук, доцент кафедры информационных технологий и высшей математики Минского института управления.

Иван Александрович Лаврёнов – студент 4-го курса факультета прикладной математики БГУ.