ФИЗИКА МЕТАЛЛОВ и МЕТАЛЛОВЕДЕНИЕ

ОТДЕЛЬНЫЙ ОТТИСК

Nº 9

1990

О ВОЗДЕЙСТВИИ МАГНИТНОГО ПОЛЯ НА НИЗКОТЕМПЕРАТУРНЫЙ ИМПЕДАНС ВТСП ИТТРИЕВОЙ КЕРАМИКИ В ДИАПАЗОНЕ ДЕЦИМЕТРОВЫХ ВОЛН

С. Е. Демьянов, А. А. Дрозд, В. Р. Соболь, Д. В. Пашик, Т. А. Криворучко, А. Р. Буев, С. П. Закатов, В. Н. Саверин

Новерхностное сопротивление ВТСП керамики $YBa_2Cu_3O_{6+x}$ для ВЧ поля с длиной волны 70 см изучено методом регистрации собственной добротности коаксиального короткозамкнутого резонатора, изготовленного из исследуемого материала. Установлено, что при T = 4.2 К r_s слабо линейно изменяется с H, за исключением области полей меньших H_{c1} , где зависимость квадратична. Величина r_s при T = 4.2 К составляет 0,02 Ом, а при T = 300 К — 0,7 Ом, что коррелирует с положением о наличии сегнетоэлектрического гигантского поглощения мощности ВЧ поля.

Открытие нового класса высокотемпературных сверхпроводящих материалов — металлооксидов — выдвинуло – требования понска путей их скорейшего практического применения в различных устройствах как постоянного тока, так и высокочастотных. Известно, что поверхностное сопротивление как определенный аналог кинетического коэффициента в нестационарных условиях является одной из важнейших характеристик при изучении фундаментальных явлений, а также при решении воиросов о пригодности для практического использования того или ниого матернала в различных устройствах передачи и накопления энергии высокочастотного поля. Исследование данного параметра принято проводить при воздействии таких внешних факторов, которые позволяют моделировать реальные условия эксилуатации подобных устройств и по характеру отклика на возмущение развивать определенные теоретические концепции о природе изучаемого материала. В этой связи особенно актуально уяснение характера воздействия на высокочастотные свойства сверхпроводящих керамических материалов системы YBa₂Cu₃O_{6+х} температуры и внешнего магнитного поля. Подобная экспериментальная задача весьма обшириа и частично рассматривалась в ряде работ (см., напр., [1-6]), где установлены температурная и магнитополевая зависимости поверхностного сопротивления rs керамического материала указанной системы в микроволновом и выше диапазоне частот.

В настоящем сообщении представлены результаты исследования воздействия на высокочастотные свойства, то есть действительную часть поверхностного сопротивления иттриевой керамики r_s внешнего магнитного поля H в гелиевой области температур в полях болсе низкой частоты $f \approx 5 \cdot 10^8$ Гц.

Для решения поставленной задачи использовали методические концепции работы [3], где резонансная система полностью изготавливалась из исследуемого матернала и состояла из трех фрагментов. Однако в данном случае сложность заключалась в нетривиальности резонансной системы для высокочастотного поля с длиной волны излучения в вакууме 70 см. Это вынудило выбрать коакснальный короткозамкнутый резонатор, целиком формируемый из сверхироводящей керамики. Синтез матернала проводили по следующим реакциям:

1. $Y_2O_3 + 4BaCO_3 + 6CuO = 2YBa_2Cu_3O_{6+x} + 4CO_2;$

2. $Y_2O_3 + 4Ba (OH)_2 \cdot 8H_2O + 6CuO = 2YBa_2Cu_3O_{6+x} + 12H_2O;$

3.
$$Y_2O_3 + 4BaO_2 + 6CuO = 2YBa_2Cu_3O_{6+x} + 2O_2$$
.

Неходные компоненты протирали через сито с ячейками размеров 100 мкм, после чего делали навески, рассчитанные в соответствии с приведенными реакциями. Навески смешивали в двухконусном смесителе со стальными шарами в течение 1 ч. Полученную шихту размещали на подставках из алюмооксидной керамики тонким слоем толщиной около 10 мм. Синтез проводили в камерных печах на воздухе, после чего полученную массу дробили, разламывали в ручной мельнице в порошок, из которого отсенвали фракцию менее 50 мкм, а более крупные фракции затем домалывали.

Для изготовления деталей резонаторов была выбрана технологическая схема, включающая гидростатическое прессование из ВТСП порошка спекание их и последующую механическую обработку. Сущность гидростатического или изостатического прессования (формования) заключается в уплотнении порошка в эластичной или деформируемой оболочке в условиях всестороннего сжатия, что приводит к более равномерному распределению материала и более высокой плотности прессовок при отсутствии анизотропии их структуры и свойств. Это обеспечивает в комплексе с последующим спеканием достаточную механическую прочность изделия. Температурный режим спекания в основном повторяет режим синтеза ВТСП порошка с отличием, что вместо быстрого нагрева шихты производится плавный нагрев прессовки до 950° С со скоростью 150 град/ч, затем следует выдержка при 950° С в течение 4—6 ч, охлаждение до 450° С со скоростью 1 град/мин, выдержка при 450° С в течение 3—4 ч и охлаждение до температуры менее 200° С со скоростью не более 1 град/ч.

Керамический резонатор размещали в термостатируемом и вакуумируемом цилиндре с двойной стенкой, который в свою очередь фиксировался в рабочем объеме соленоида гелиевого криостата УИС-1. Температуру *Т* контролировали двумя угольными термометрами сопротивления, один из которых находился внутри центрального проводника, а другой — на внешней поверхности резонатора. Петли связи с системой возбуждения и регистрации размещали в диаметрально противоположно расположенных отверстиях на короткозамыкающей стенке резонатора.

Применение в качестве резонирующей системы коаксиального короткозамкнутого резонатора позволило более или менее уверенно определять как зависимости r_s от T и H, так и его абсолютные значения. Это обусловлено тем, что теория такого резонатора даже в рамках импедансного метода позволяет достаточно легко связать добротность системы Q с поверхностным сопротивлением и так называемым коэффициентом формы резонатора (КФР), который определяется геометрией системы — диаметром внутреннего и внешнего проводников, зазором, формирующим сосредоточенную емкость, длиной системы. В данном случае КФР определяли как аналитически из заданной геометрии, так корректировали и экспериментально путем регистрации добротности идентичного по геометрии резонатора из меди с привлечением литературных данных о поверхностном сопротивлении этого материала при заданном классе обработки рабочей поверхности.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Традиционная зависимость сопротивления постоянному току исследуемой керамики в диапазоне температур 80—120 К представлена на рис. 1. На рисунке отражена ширина по температуре и характер сверхпроводящего перехода материала, синтезированного по реакции 3. Для остальных реакций характерны более широкие по температурному диапазону интервалы перехода, указывающие на сильную негомогенность материала. Величина удельного сопротивления дана в относительных единицах, а при комнатной температуре соответствует 10⁻⁴ Ом · см. Плотность соответствовала 90—95% от теоретической, соответствующей 6,36 г/см³.

На рис. 2 изображена температурная зависимость добротности исследуемого резонатора в нулевом магнитном поле и при H=7 Тл. Для сравнения уровень добротности идентичного по геометрии резонатора, изготовленного из алюминия особой чистоты, в нулевом магнитном поле составляет $\approx 10^4$. Более высокий уровень потерь в керамическом резонаторе определяет меньшую селективность системы при T=4,2 К, что свидетельствует о том, что поверхностное сопротивление керамического материала данной технологии более чем на порядок превышает r_s чистого алюминия, составляющего в данной области частот в приближении предельно апомального скин-эффекта, по [7], 5·10⁻⁴ Ом.

На рис. 3 и 4 отражены зависимости поверхностного сопротивления r_s от температуры и магнитного поля, причем для кривой $r_s = f(T)$ *H* иг-

рает роль фиксированного параметра, пробегающего значения от 0 до 7 Тл, а магнитополевая зависимость $r_s(H)$ представлена при температуре жидкого гелия.

Для кривой $r_s(T)$ (см. рис. 3) обращает на себя внимание сложное поведение даже для нулевого H. Как известно, действительная часть поверхностного сопротивления r_s задает омические потери и приводит к конечной ширине резонансной линии. При этом в дополнение к тем-

Рис. 1. Температурная зависимость сопротивления постоянному току керамического материала YBa₂Cu₃O_{6+x}.

пературному могут иметь место и другие механизмы потерь, например на радиацию, резистивные потери, появляющиеся от локальных сосредоточенных сопротивлений, вызванных несовершенством соединения между сверхпроводящими элементами резонатора, а также шероховатости поверхности, которые дают дополнительные омические потери Κ сопротивлению, имеющемуся в однородном материале, из которого резонансная система создана. Эти потери от температуры или не зависят или зависят в гораздо меньшей степени. Вдобавок к этому, материал в результате действия примесей и структурных несовершенств

сам по себе обладает некоторым остаточным r_s , не зависящим от T. Сложность поведения $r_s(T)$ заключается в том, что для H=0 кривая r_s не обнаруживает четкого выхода на насыщение даже при T=4,2 К, что свидетельствует о низком уровне температуронезависящих потерь. Кроме этого, данное поведение не коррелирует с поведением действительной части поверхностного сопротивле-

ния в модели БКШ, где для уровня *T/T_c* < 0,5 (*T_c* — критическая температура) $r_s(T) \sim T^{-1} \exp\left(-T_c/\tilde{T}\right)$ ΗИ для $2\Delta/kT_c = 1$, ни тем <u>бо-</u> лее для значений этого параметра, равного 3 и более единицам (2 — величина сверхпроводящей щели). Следует отметить, ЧТО эта температурная зависимость, близкая Κ линейной, при $T/T_c < 0,5$ находит определенную корреляцию с поведением r_s как f(T) в [6], где действительная составля-

Рис. 2. Собственная добротность керамического коаксиального короткозамкнутого резонатора как функция температуры T: 1 — H=7; 2 — 0 Тл.

ющая импеданса зависит от T почти линейно с той лишь разницей, что для таких высоких частот ≈ 102 ГГц — тангенс угла наклона этой квазилинейной температурной зависимости очень незначителен и величина сопротивления по абсолютной величине на порядок больше, чем в данном случае.

В сильном магнитном поле с понижением температуры при T < 10 К наблюдается выход r_s на «насыщение», при этом величина r_s больше, чем в нулевом магнитном поле, и увеличивается температурная зависимость r_s в области T > 10 К в том смысле, что «наклон» квазилинейной температурной зависимости при 10 < T < 40 К становится больше. Следуя классической теории, концентрация неспаренных электронов растет с увеличением H, при этом в сильных магнитных полях температура, как причина появления неспаренных электронов, на фоне уже существующих за счет H, видимо, «включается» не сразу, что и является источником «насыщения» $r_s(T)$ при T < 10 К и H = 1 и 7 Тл.

На полевой зависимости $r_s(H)$ (см. рис. 4) имеют место две характерные области: области сильного роста r_s с H и слабого изменения r_s , близкая к линейной с малым углом наклона, простирающаяся до максимально достижимых величин магнитного поля. Границу между данными областями, которая приходится на район 60—70 мТл, можно отнести к первому критическому полю. Сильное изменение $r_s(H)$ начинается с H=2 мТл и близко к квадратичному. Это в определенной степени соответствует результатам работы [8] о природе поглощения

энергии высокочастотного поля подобной керамикой в слабых магнитных полях как результате частичного перехода керамики из мейснеровского в смешанное состояние, когда при $H < H_c$ резко увеличивается магнитное поле на поверхностных неоднородностях. Поверхност-

Рис. 4. Поверхностное сопротивление *r*_s иттриевой керамики как функция внешнего магнитного поля при *T* = 4,2 K.

ные неоднородности или шероховатости керамического резонатора фиксировались с помощью профилографа-профилометра, модель 201, и были таковы, что среднеарифметическое отклонение микронеровностей от средней линии профиля, то есть размер шероховатостей по нормали к поверхности, составлял —1,5 мкм. Исходя из того, что и вдоль поверхности размер шероховатостей был такого же порядка, вполне допустимо связать возникающее поглощение с вязким течением абрикосовских вихрей. Так, следуя данным эксперимента, прирост r_s между точками H = 10 - 20 мТл соответствует $\approx 8 \cdot 10^{-3}$ Ом, в то время как, следуя выражению (5) из работы [8], для определения вклада в импеданс магнитного поля $r_s(H) = H^2 \cdot H_{c1}^{-1} \cdot H_{c2}^{-1} \cdot \lambda^{-1} \cdot \sigma^{-1}$, где H_{c1} и H_{c2} — первое и второе критические поля; о — проводимость в нормальном состоянии; $\lambda-$ глубина проникновения поля в сверхпроводник, для $\sigma=10^4$ (Омimes \times см) $^{-1}$; $\lambda = 10^{-5}$ см, $H_c = 1$ Тл_прирост r_s между указанными точками составляет 2.10-3 Ом, что, видимо, достаточно хорошо соответствует эксперименту, учитывая условность определения $H_c(H_c^2 = H_{c1} \cdot H_{c2})$.

В работах [9—11], посвященных гигантскому поглощению мощности высокочастотного поля в высокотемпературных сверхпроводниках, изучена частотная зависимость величины потерь образцов, помещенных в резонатор. В приближении нормального скин-эффекта рассчитана величина статической проводимости, которая в обычных условиях, когда нет дополнительного механизма поглощения, должна быть не за-

6*

висима от частоты. «Провал» статической проводимости, определенной подобным образом в области частот 10⁸—10¹⁰ Гц, показывает на присутствие дополнительного механизма поглощения, при этом значение эффективной проводимости $\sigma = 10^3$ (Ом·см)⁻¹, определяемое из поглощения на частоте 5.10⁸ Гц при T = 90 К и $\sigma = 10^2$ (Ом.см)⁻¹ на той же частоте при T = 300 K, лежат на пределе величины, которая вызывает моттовскую диэлектризацию. Величина же истинной статической проводимости $\sim 2 \cdot 10^3$ (Ом·см)⁻¹ при T = 300 К должна привести к величине поверхностного сопротивления в приближении свободных электронов ~2.10-1 Ом. О наличии особенностей в поглощении, связанных не с электронами проводимости, свидетельствуют и результаты настоящего эксперимента. Так, значение статической проводимости $\sigma =$ $=10^4$ (Ом·см)⁻¹ при T=300 К должно было бы вызвать величину $r_s \sim 0.08$ Ом, в то время как эксперимент дает $\simeq 0.7$ Ом. Это коррелирует с результатами [9—11], где отношения пересчитанных из величины ВЧ потерь статических проводимостей для резонансного и нерезонансного частотных диапазонов составляет ~102, что с учетом корневой зависимости r_s от статического соответствует различию в один порядок.

Следует отметить, что полученная величина поверхностного сопротивления в нулевом магнитном поле 2.10-2 Ом значительно превышает величину, представленную в работе [5], где r_s, измеренное на частоте 10¹⁰ Гц, соответствует 4·10⁻³ Ом. Данное несоответствие, видимо, связано только с тем, что в [5] рассмотрен частотный диапазон, который характеризуется, по данным [9-11], полной корреляцией поверхностного сопротивления статической проводимости без каких-либо аномалий. В этой связи можно утверждать, что результаты работы [5] качественно не противоречат как настоящей работе, так и другим исследованиям. Количественное же различие в величинах статической проводимости и, как следствие, поверхностного сопротивления естественны в силу различия технологий приготовления образцов.

Институт физики твердого тела и полупроводников АН БССР

Поступила в редакцию 23 июня 1989 г.

ЛИТЕРАТУРА

Fastampa R., Giura M., Marcon R., Mataccita C. Responce of a YBa₂Cu₃O_{7-x} Superconducting System to a Microwave Field with and without an Exter-nal Magnetic Field. — Europhys. Letters, 1988, 6(3), p. 265—270.
 Hagen M., Hein M., Klein N. e. a. Observation of RF Superconductivity in YBa₂Cu₃O_{9-x} at 3 Ghz. — J. Magn. a. Magn. Mater., 1987, 68, L1—L5.
 Radlife W., Gallop J., Langham C. e. a. Microwave cavity made from high temperature superconductor. — Electron Letters, 1988, 24, N 17, p. 1085—1086.
 Fathy A., Kalokitis D., Belohoubek E. e. a. Microwave surface re-sistance of bulk YBa₂Cu₃O_{6+x} material. — Phys. Rev. B, 1988, 38, N 10, p. 7023—7025.
 A wasthi A., Carini J., Alavi B., Gruner G. Millimeter-wave surface impedance measurements of YBa₂Cu₃O_{7-x} ceramic superconductors. — Sol. State Comm., 1988, 67 N 4. p. 373—377.

1988, 67, N 4, p. 373-377. 6. Tomash W. J., Blackstead H. A., Ruggiero S. e. a. Magnetic field

dependence of nonresonant microwave power dissipation in $YBa_2Cu_3O_{7-x}$. — Phys. Rev.

dependence of nonresonant писточаче рочет цазаранов и ледевольств.
В, 1988, 37, N 16, р. 9864—9867.
7. Менде Ф. Ф., Бондаренко И. Н., Трубицын А. В. Сверхпроводящие и охлаждаемые резонансные системы. — Киев: Наукова думка, 1976. — 270 с.
8. Хейфец А. С., Вейнгер А. И., Забродский А. Г. и др. О природе СВЧ поглощения в сверхпроводящей керамике YBa₂Cu₃O₇ в слабых магнитных магнитных полях. — ФТТ, 1989, 31, вып. 1, с. 294—297.
9. Щербаков А. С., Кациельсон М. И., Трефилов А. В. и др. Сегчество системы и сонечных частотах в La₂Cu₀A и La_{1,825}Sr_{0,175}CuO₄. —

нетоэлектрические аномалии на конечных частотах в La₂CuO₄ и La_{1.825}Sr_{0.175}CuO₄ –

ФММ, 1987, 64, вып. 4, с. 735-741. 10. Щербаков А. С., Кацнельсон М. И., Трефилов А. В. и др. Гигантское поглощение мощности высокочастотного электромагнитного поля в высоко-температурных сверхпроводниках. — ФММ, 1987, 64, вып. 4, с. 742—746. 11. Щербаков А. С., Кацнельсон М. И., Трефилов А. В. и др. Сегне-тоэлектрические аномалии и сверхпроводимость в металлооксидных соединениях. —

Письма в ЖЭТФ, 1989, 49, вып. 2, с. 102-105.