Борисова Н.Л.

Подготовка к урокам географии в 7 классе: Черная металлургия, цветная металлургия Геаграфія: научно-методический журнал. 2014. – № 11. – С.40-54.

Тема 6. ЧЕРНАЯ МЕТАЛЛУРГИЯ

Цель занямия: уяснить особенности функционирования предприятий чёрной металлургии, специфику технологических процессов выплавки черновых металлов. Изучить технико-экономические особенности производства, факторы размещения металлургических предприятий.

inperiored, quittepri puomenti meruming	r r r
Основные понятия, термины	Основное содержание
Чёрная металлургия, доменный процесс,	1. Роль чёрной металлургии в
чугун, сталь, мартеновский способ,	народном хозяйстве.
электроплавка, дуплекс-процесс,	2. Исходные материалы для
прокатное производство, бескоксовый	производства чугуна.
либо конверторный способ, железные	3. Доменное производство.
руды, шихта, кокс, доменная печь,	4. Производство стали.
электрометаллургия,	5. Прокатное производство.
конвертор, концентрат, агломерация	6. Порошковая металлургия.
бездоменная металлургия	7. Чёрная металлургия и
.01	окружающая среда.

Вопросы для обсуждения

- 1. Значение и состав чёрной металлургии. Виды черных металлов.
- 2. Исходные материалы для производства чугуна и особенности доменного процесса.
 - 3. Сущность сталеплавильного процесса, способы производства стали.
 - 4. Безкоксовая металлургия и её преимущества.
- 5. Типы металлургических предприятий, особенности их размещения. Комбинирование в чёрной металлургии.

Основные сведения

Чёрная металлургия — это вся система производства от добычи и подготовки сырья, топлива, до выпуска проката и изделий дальнейшей переделки.

Сырьём для чёрной металлургии является руда, железо, марганец и др. Железо и его сплавы с углеродом и другими элементами образуют группу чёрных металлов. В зависимости от количества, содержащегося в железе углерода, чёрные металлы делят на чугун и сталь. Если содержание углерода в сплаве менее 2%, то сплав называют сталью. А при содержании углерода от 2% и более сплав называется чугуном. Важнейшей особенностью стали является её ковкость и способность менять механические свойства в результате быстрого охлаждения.

Предприятия чёрной металлургии могут быть нескольких типов: комбинаты и заводы полного цикла, где производятся чугун, сталь, прокат.

Эти комбинаты размещают либо вблизи сырьевой базы, либо у топливных ресурсов.

Заводы неполного цикла (передельные – производство стали и проката)- ориентируются на вторичное сырьё (лом) и на потребителя (машиностроения).

<u>Характерные черты чёрной металлургии</u>: производство основной части металла на комбинатах, внедрение безотходных технологий получения металла, внедрение новых способов получения металла, безкоксовый, внедоменный, порошковая металлургия. Основные производства: добыча и обогащение железной руды, коксование угля, получение чёрных металлов при вторичном использовании металлолома, производство ферросплавов, прокатное производство.

Основные типы предприятий:

- 1. Металлургические комбинаты делятся по нескольким направлениям: стадия технологического процесса, стадия использования отходов (утилизация выбросов), предприятия по выпуску стали и проката (передельная металлургия) без производства чугуна.
- 2. Малая металлургия (производство металла на машиностроительных предприятиях), по выпуску качественной стали. Ориентируются на дешёвую электроэнергию, т.е. на ГЭС.

Производство чугуна. Доменный процесс. Для получения чугуна требуются железные и марганцевые руды, топливо, флюсы и кислород.

В чёрной металлургии применяются следующие виды железных руд, красный железняк, магнитный железняк, бурый железняк и др.

Перед использованием в доменном процессе железные руды проходят ряд предварительных обработок: дробление, обжиг, обогащение и агломерация.

Дробление имеет целью придать руде единое физическое состояние. Обжиг руды производится для удаления из руды химически связанной воды, углекислоты, частичного удаления серы и фосфора.

Обогащение руды преследует цель повысить в руде содержание железа за счёт удаления пустой породы.

Агломерация — это процесс спекания рудной мелочи, процесс опускания порошкообразных руд. Несмотря на предварительную обработку руды, в ней остаётся определённое количество пустой породы. Поэтому в доменную шихту вводят флюсы (известняк, кремнезём). Они вступают в реакцию с пустой породой и образуют соединения — шлак. Для производства чугуна, кроме подготовленной руды, требуются технологическое топливо (кокс), флюсы, вода, а также легирующие материалы.

Кокс используется при выплавке чугуна как технологическое топливо, т.е. вместе с рудой помещается в печь для химического восстановления железа.

Побочными продуктами чёрной металлургии являются: газы (доменные, коксовые, сернистые), их используют для вторичного подогрева печей и как сырьё для химической промышленности. Шлаки идут на

производство кирпича, цемента, бетона и др. Чугун является сырьём для выплавки стали и ферросплавов. Отрасль очень материалоёмкая, поэтому ориентируется на месторождениях железной руды и на месторождениях по добыче угля.

Шихта — смесь исходных материалов, а в некоторых случаях (например, при выплавке чугуна в доменной печи) и топлива в определённой пропорции, подлежащая переработке в металлургических агрегатах. Работа доменных печей происходит непрерывно в течение нескольких лет, пока не потребуется капитальный ремонт.

Продуктом доменного процесса являются также ферросплавы, или специальные чугуны. Наиболее распространёнными являются ферромарганец, ферросилиций, феррохром и др. Ферромарганец содержит 90 % марганца, ферросилиций – 10 – 95 % кремния, феррохром – не менее 65 % хрома. Ферросплавы, как правило, применяются в качестве добавок, или присадок, при получении стали.

В доменном процессе топливо выполняет две функции: служит источником тепла и является источником углерода, необходимого для восстановления железа.

Нетрадиционные способы современной металлургии. Бездоменное производство. Технологический процесс получения металла начинается с производства окатышей из концентрата железной руды (шариков диаметром 10 – 12 мм). Из окисленных окатышей с помощью природного газа получают металлизованные окатыши с содержанием 90 – 95% железа. Из окатышей, содержащих значительно меньше, чем чугун, углерода, (около 1%), фосфора, кремния, в электропечах получается качественная сталь. Для производства 1 т окатышей (губчатого железа) расходуется 500 – 600 м³ природного газа. Получение окатышей. В измельченный железный концентрат добавляют, глину, с тем, чтобы он лучше окомковывался при обжиге, и известняк, выступающий в дальнейшем в качестве флюса. Эту смесь помещают во вращающиеся барабаны – грануляторы. При этом образуются окисленные окатыши. Последние обжигают, а затем обрабатывают природным газом в шахтных печах. Первоначально природный газ подвергают конверсии путём добавления углекислого газа. При этом образуется угарный газ и водород. Угарный газ и водород, нагретые до температуры 1000 – 1100 °C, вдувают в шахтную печь, где они взаимодействуют с окисленными окатышами, восстанавливая железо:

 $Fe_2O_3+3CO = 2Fe+3CO_2$ $Fe_2O_3+3H_2 = 2Fe+3H_2O$

В результате указанных процессов образуется губчатое железо — металлизованные окатыши, имеющие высокое содержание чистого железа. Главным фактором размещения данного производства — близость к железорудному сырью, влияние топливного фактора существенно ослабло.

Производство стали. Сущность сталеплавильного процесса. Основные способы производства стали из чугуна. Переработка чугуна в сталь

производится в мартеновских печах, конвертерах, электропечах. Суть процесса состоит в окислении примесей, входящих в состав чугуна.

Мартеновский способ. Печи выдерживают 400 - 500 плавок (5 - 3) плавки в сутки). Плавка длится 6 и более часов. За 1 минуту производится 1 т стали. Очень топливоёмкое производство. Вторым способом получения стали в мартеновских печах является рудный процесс. Мартеновские печи, работающие по рудному процессу, входят в состав металлургических комбинатов, имеющих полный металлургический цикл.

Кислородно-конверторный способ получения стали основан, выжигании в расплавленном чугуне примесей продуванием кислородом в собой конвертерах. Конвертер представляет стальное грушевидной формы ёмкостью от 20 до 350 т. Внутри он выложен огнеупорным материалом, вверху имеет отверстие — горловину, через которую заливается жидкий чугун и заваливается скрап. Печь может поворачиваться вокруг горизонтальной оси, что осуществляется двумя электродвигателями. По водоохлаждаемой фурме, вводимой лебёдкой в горловину конвертера, подаётся кислород под давлением 9 – 14 атмосфер. Процесс начинается с завалки металлолома в горловину наклонённого конвертера. Затем заливается жидкий чугун Первоначально окисляется железо:

 $2\text{Fe+O}_2 = 2\text{FeO}$

Затем железо восстанавливается за счёт окисления углерода:

FeO+C=CO+Fe и других примесей (кремния и марганца):

Si+2FeO=SiO₂+2Fe

Mn+FeO=MnO+Fe

Для удаления из чугуна фосфора в конвертер вводится флюс – известь (CaO), с которой реагирует фосфор, образуя шлак:

 $2P+5FeO+4CaO=4CaO \cdot P_2O_5+5Fe$

Процесс не гребует топлива, так как тепло выделяется за счёт сгорания углерода, фосфора и др. Накапливающийся шлак выводят из конвертера через горловину. Преимущества этого способа — более дешёвый агрегат, чем мартеновская печь, быстрота процесса и более высокая производительность, экономия топлива, меньшие эксплуатационные расходы. Недостатки — потери металла за счёт выгорания (выход 90 — 93%), ограниченные возможности использования металлолома.

Электроплавка. Выплавка стали с помощью электроэнергии производится в дуговых и индукционных электропечах. Очень электроёмкий, но позволяет производить легирующие стали. Применяются легирующие металлы: титан, вольфрам, ванадий. Электродуговой способ получения стали даёт возможность получать сталь с незначительными примесями фосфора и серы, которые являются очень нежелательными составными частями, так как ухудшают её качество.

Индукционным способом электроплавки получают высоколегированные, нержавеющие, жаропрочные и другие виды стали.

Дуплекс-процесс. Один из способов получения высококачественной стали. Он основан на использовании в электропечах жидкого метала (стали), полученного в конвертах на кислородном дутье или мартеновской печи. Экономической основой применения этого процесса является небольшой расход электроэнергии для получения высококачественной стали.

Прокатное производство. Прокатка металла — это способ его обработки с помощью давления и обжатия, получают прокат различных сортов: круглый, квадратный, рельсовый, угловой, трубы производятся литьём и прокаткой. Прокат используется в машиностроении и строительстве: проволока, балки, рельсы и т.д.

Таблица *Металлургический комплекс*

Совокупность отраслей, производящих разнообразные металлы (добыча руд,			
металлов, их обогащение, выплавка металла, производство проката).			
Основные факторы размещения предприятий металлургии			
Особенности используемого сырья (руды).	Применяемый для	География сырьевых и	
	получения металла вид	энергетических	
	энергии	источников	
Типы металлургических предприятий			
Металлургические	Сталелитейные и	Предприятия	
предприятия полного цикла,	сталепрокатные заводы бездоменной		
производящие чугун, сталь,	«передельной»	металлургии	
прокат.	металлургии.	(электропечи).	

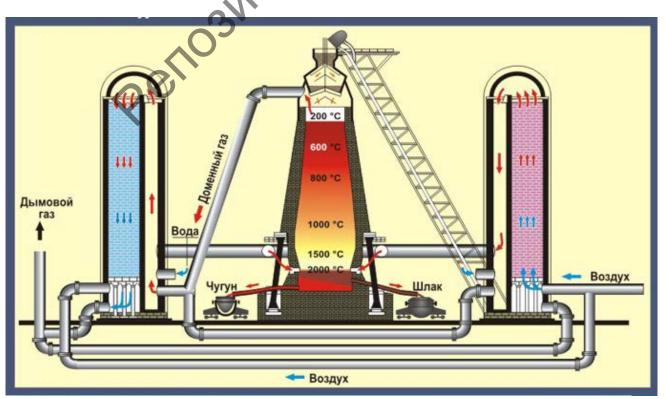


Рис.1. Производство чугуна

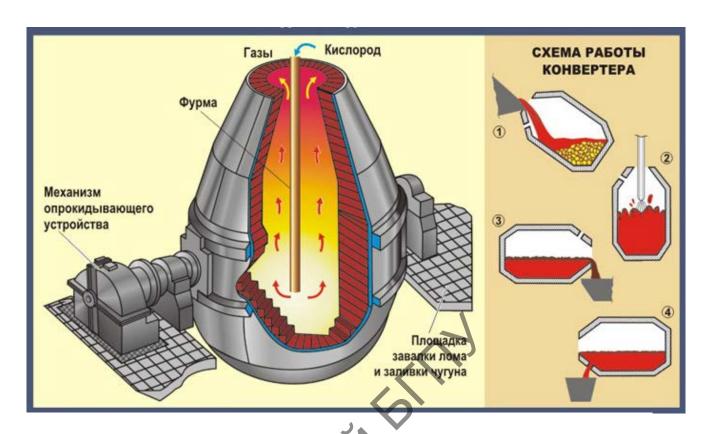


Рис. 2. Конвертер с кислородным дутьём

Тема 7. ЦВЕТНАЯ МЕТАЛЛУРГИЯ

Цель занятия: изучить специфику технологических процессов производства важнейших цветных металлов, технико-экономические особенности производства и их влияние на размещение предприятий, выяснить особенности сырьевой базы.

выяснить осоосиности сырысьой оазы.		
Основные понятия, термины	Основное содержание	
Цветная металлургия, бокситы, глинозём,	1. Роль цветной металлургии в	
группы цветных металлов, свойства	народном хозяйстве.	
цветных металлов, обогащение, флотация,	2. Исходные материалы для	
гидрометаллургический и	производства металлов.	
пирометаллургический способ	3. Производство меди.	
переработки, штейн, черновые металлы	4. Производство алюминия.	
	5. Производство цинка, свинца.	
	6. Цветная металлургия и	
	окружающая среда.	

Вопросы для обсуждения

- 1. Состав цветной металлургии, особенности сырьевых ресурсов, общие черты технологического процесса.
 - 2. Пирометаллургический и гидрометаллургический способы извлечения

цветных металлов.

- 3. Технико-экономические особенности производства меди, цинка и их влияние на размещение предприятий.
- 4. Технологическая схема производства и размещение предприятий металлургии лёгких металлов - алюминия, титана.
- 5. Основные направления научно технического прогресса в цветной металлургии.

Основные сведения

Классификация цветных металлов. Особенности сырьевой базы, технологического процесса, особенности размещения предприятий.

самостоятельных Цветная Металлургия включает 14 производящих сплавы, алмазы, электроды и следующие группы металлов:

- 1. группа тяжёлых цветных металлов:
- а) основные (медь, цинк, свинец,)
- б) малые металлов (ртуть, сурьма и др.);
- 2) лёгких металлов (алюминий, магний);
- 3) редких металлов (германий, бор, селен);
- 4) легирующих металлов, использующихся в основном в чёрной металлургии (вольфрам, ванадий, хром). 5) благородных металлов (золото, платина, серебро и т.д.);

Почти все цветные металлы обладают пластичностью и вязкостью. Отдельные цветные металлы обладают высокой электропроводностью, другие высокой стойкостью к химическим реактивам, третьи лёгкостью. В зависимости от свойств металла и определяется область его применения.

Особенностями цветной металлургии являются низкое содержание полезных компонентов в руде; многокомпонентность руд, материалоёмкость отрасли (на 1 т олова 300 т руды). Так, полиметаллические руды содержат цинк, свинец, медь, благородные металлы, серу. Добытые руды сначала подвергаются обогащению, чтобы отделить от руды пустую породу и повысить содержание металла в руде, а также отделить руды различных металлов.

Наиболее распространённым флотационный способ является обогащения. Он основывается на несмачиваемости металлов.

Другим способом обогащения является метод тяжёлых суспензий. Он основывается на использовании тяжёлых жидкостей и разности удельных весов пустой породы и минералов, содержащих металл.

Иногда применяют и химические способы обогащения руд. Например, при обогащении смешанных сульфидных и окисленных руд меди, в пульпу (измельчённая руда, смешанная с водой) добавляют серную кислоту, которая затем флотируется вместе с сульфидной медью. Этот способ позволяет извлечь из руды до 90 % меди вместо 55 % при обычном способе флотации. Пирометаллургический, гидрометаллургический способы.

Переработка металла ведётся 2 способами: пирометаллургическим и гидрометаллургическим.

Пирометаллургический — самый распространённый. Его сущность в термической обработке концентрата. Концентрат обжигают при температуре 1500 — 1600 °C. Он плавится и образует полуфабрикат: штейн и шлаки. В качестве топлива используют кокс, газ, электроэнергию. При обжиге большинства металлов выделяется сернистый газ, который идёт на производство серной кислоты.

Гидрометаллургический. Руда переводится в состояние раствора (в качестве растворителя серная кислота). Раствор подвергают электролизу, в результате которого выделяется чистый металл. Такое производство ориентируется на производство серной кислоты И на дешёвую электроэнергию.

Технико-экономические особенности производства тяжёлых металлов (меди, свинца, цинка). Особенности размещения предприятий.

Медь. Для производства меди используются два рода руд: сульфидные – соединение меди с серой, и окисленные руды – соединение меди с кислородом.

Сульфидные руды – медный колчедан, ковелин, пириты.

Окисленные руды – малахит, тенорит.

Металлургическая переработка концентратов осуществляется по одному из 2 способов. Пирометаллургический способ включает три последовательные стадии — получение штейна, черновой меди и рафинирование черновой меди.

При гидрометаллургическом способе используется окисленная руда. Для перевода окисленных руд в растворимые соединения на руду действуют серной кислотой, которая с окислом меди образует сернокислую соль. Для получения сернокислой меди могут быть использованы медные руды, которые непригодны для обогащения. Из сернокислой меди металлическая медь может быть получена двумя способами — путём воздействия на раствор железом (цементация меди) или электролизом раствора сернокислой меди. Все медеплавильные заводы работают в районах добычи сырья.

Цинк – синевато-белый металл, обладающей средней плотностью и высокой антикоррозийностью. Он легко образует сплавы с медью, железом, серебром и др. Половина производимого цинка идёт на цинкование труб, ванн, посуды. Примерно 10 % идёт на изготовления мазей, капель. Сырьё для производства цинка – сернистый цинк (цинковая обманка). С помощью флотации он отделяется от руд других металлов. Металлический цинк способов. получают одному ИЗ Более распространён гидрометаллургический. Сущность его в том, что на цинковый концентрат воздействуют слабой серной кислотой, и цинк переводится в растворенное Раствор сернокислого очищается цинка подвергается электролизу. На катоде выделяется металлический цинк. Затем его плавят и отливают в слитки. По пирометаллургическому способу цинк получают путём восстановления окиси цинка углеродом (коксом). Концентрат цинка смешивается с коксом и прокаливается. В результате восстанавливается металлический цинк. Заводы, работающие по этому способу, размещаются в

районах добычи каменного угля. Цинк на начальной стадии ориентируется на сырьевую базу. Далее производство цинка ориентируется на топливо и энергию, а свинец остаётся у сырьевой базы. Свинец и цинк (всегда в природе добываются вместе — свинцово-цинковые руды). Цинка в руде — 7 %, свинца — 2-3 %.

Свинец используется в ядерной и атомной промышленности, в полиграфической печати. Это — мягкий и пластичный металл. Он легко поддаётся всем видам обработки. Применяется в кабельной промышленности, в производстве аккумуляторов и т.д. Сырьём для получения свинца является ряд его соединений, встречающихся в природе. Основным сырьём является свинцовый блеск (галенит) — соединение свинца с серой.

Сырьевая база, особенности технологического процесса и размещения предприятий по производству алюминия и титана.

Алюминий — лёгкий, антикоррозийный, имеет высокую электро- и теплопроводность, пластичный. Легко образует различные сплавы. В качестве сырья для получения алюминия используются бокситы, нефелины, алуниты и сиениты. В алюминиевой промышленности используются те бокситы, в которых содержание глинозёма превышает 40 %. Первоначально из бокситов выделяют глинозём, а последний затем подвергают электролизу. Глинозём является стойким окислом, имеющим температуру плавления 2050 °С, поэтому получение алюминия осуществляется электролитическим путём. Этот процесс электроёмкий. Расход электроэнергии составляет 19 тыс. кВт/ч на 1 т алюминия. Производство глинозёма осуществляется в районах добычи сырья, так как расход его составляет 4 т на 1 т глинозёма, а производство металлического алюминия размещается в центрах дешёвой электроэнергии, в основном у крупных ГЭС.

Титан – высоко прочный металл, дорогой, электроёмкий, очень лёгкий, температура плавления °C. 1668 Используется в авиапромышленности, производстве часов, электронике, химической промышленности. Для получения титана используются титановый железняк. Руды титана подвергаются обработке углеродом и одним из галогенов, чаще хлором. Путём такой обработки получают четырёххлористый титан. Последний вводится в реторту, куда до этого был помещён металлический магний, нагретый до 1000 °C. Магний, как химически более активный элемент, вступает в соединение с хлором и освобождает титан. Предприятия по производству титана комбинируются с магниевыми заводами в центрах, хорошо обеспеченных дешёвой электроэнергией.

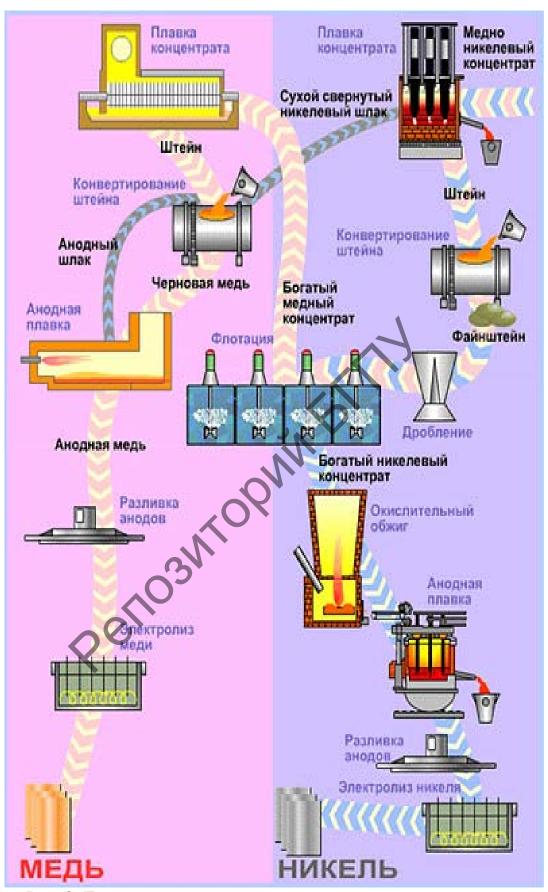


Рис. 2. Технологический процесс производства меди и никеля