T. 58. № 10

СЕРИЯ ФИЗИЧЕСКАЯ

1994

УДК 539.21

© 1994 г. В. К. СОЛОНОВИЧ, Л. В. КУХАРЕНКО, В. Р. СОБОЛЬ, О. Н. МАЗУРЕНКО, Н. А. КОРБУТ, М. М. ПРОХОРЕВИЧ

НЕКОТОРЫЕ ОСОБЕННОСТИ ЛОКАЛЬНОЙ СТРУКТУРЫ ПОВЕРХНОСТИ ПИРОЛИТИЧЕСКОГО УГЛЕРОДА, СНЯТЫЕ НА СКАНИРУЮЩЕМ ТУННЕЛЬНОМ МИКРОСКОПЕ

На пиролитическом углероде с помощью сканирующего туннельного микроскопа (СТМ) обнаружены атомные ступеньки и упорядоченные структуры с гексагональной решеткой. По-видимому, впервые выявлены молекулярные гряды однотипных молекул в пленках типа Ленгмюра — Блоджетт.

Высокоориентированный пиролитический углерод (ПУ) — один из основных материалов для отработки методик получения атомного разрешения СТМ в реальном времени. Он относительно инертен к адсорбции газов и молекул воздуха, что позволяет получать локальные участки с атомно-гладкой поверхностью. Кроме того, основная особенность изображения базисной плоскости ПУ — центрированная гексагональная решетка, образованная возвышенностями и впадинами, которая хорошо воспроизводится [1, 2]. На многих полученных изображениях ПУ пространственное распределение волновых функций электронов не всегда соответствует карте расположения атомов в решетке, хотя зачастую бывает и обратное, когда области высокой плотности зарядов совпадают с положением атомов.

Другими особенностями локальной структуры поверхности ПУ в СТМ-изображениях являются высокая амплитуда гофрировки или высот изображений атомов, а также их асимметрия [2, 3]. Помимо этого, представляют интерес и исследования характерных особенностей локальных участков поверхности органических пленок толщиной ~60 Å, нанесенных на этот углерод.

Поэтому цель настоящего исследования — изучение СТМ-изображений локальных участков поверхности ПУ, как чистого, так и покрытого органической пленкой типа Ленгмюра — Блоджетт, а также их особенностей. В круг решаемых здесь задач входит и попытка выяснения физических механизмов этих особенностей СТМ-изображений.

Исследования локальной структуры участков поверхности высокоориентированного пиролитического углерода (ВПУ) и пленок типа Ленгмюра — Блоджетт проводились в воздушной среде на СТМ (СКАН-8), разработанном в МГУ [4, 5], с разрешением по нормали не хуже 0,02 нм и в плоскости образца ≤0,2 нм. Зондирующее острие для СТМ изготавливалось из платинородиевой проволоки механическим путем и контролировалось с помощью оптической микроскопии. Подготовка поверхности ПУ осуществлялась обычным скалыванием верхнего слоя перед непосредственными измерениями. Органические мономолекулярные пленки Ленгмюра — Блоджетт наносились на ПУ в специально очищенной бидистиллированной воде по методике, разработанной авторами работы [6], которые предоставили эти образцы.

На рис. 1 отчетливо проявляется атомная структура ВПУ при окне сканирования 45×45 Å. На переднем плане этого рисунка можно заметить незначительный уклон, что свидетельствует о перепаде высот ~0,7 Å на атомном уровне

Рис. 1. Топография локального участка поверхности пиролитического углерода, снятая на СТМ в режиме Z(x, y) при окне сканирования 45 × 45 Å, напряжение $U_t = 0,030$ В, туннельный ток $I_t = 0,8$ нА

или о некоторой атомной ступеньке. Подобные результаты для ПУ зафиксированы и в работах [1, 2].

По мере дальнейшего уменьшения исследуемого участка до 22×22 Å наблюдается более выраженная атомная структура этого углерода с амплитудой зарядовой плотности, не превышающей 5 Å. Упорядоченная структура с квадратичной и гексагональной решеткой с $a = 2,3 \pm 1,2$ Å имела место при окне сканирования 22×22 и 14×14 Å в режиме Z(x, y). В одних случаях эта характерная особенность проявляется в виде яченстой структуры с небольшим разупорядочением, а в других — в виде периодической структуры с симметричным расположением атомов как по горизонтали, так и по диагонали. В последних случаях на СТМ-изображениях зачастую наблюдается каждый второй атом, что, по-видимому, связано с недостаточным качеством закругления зондирующей иглы или со сдвигом верхнего атомного слоя относительно нижележащего.

Одна из обнаруженных особенностей — наличие при одном окне сканирования 22×22 Å в режиме Z(x, y) как гексагональной поверхностной структуры, так и узловой структуры СТМ-изображения. Зарегистрированная относительно высокая гофрировка локальных участков углерода на СТМ, достигающая ~5 Å, вероятно, объясняется зависимостью плотности его поверхностных состояний вблизи уровня Ферми не только от величины энергии туннелирующих электронов и от механизмов возникновения дополнительных каналов туннелирования [2], но и от силового взаимодействия зондирующей иглы с его поверхностью [7].

Топографические изображения локальных участков поверхности пленок Ленгмюра — Блоджетт, нанесенных на этот углерод, с размерами 22×22 и 15×15 Å, полученные непосредственно в режиме Z(x, y) приведены на рис. 2 и 3. На переднем плане рисунков отчетливо проявляется атомная структура углерода, модулирующая СТМ-изображения рассматриваемых участков. Поскольку исследуемые двухкомпонентные пленки Ленгмюра — Блоджетт состояли из β-дикетоната и цетиламина, то упаковка этих молекул подобна типу «кирпичной

Рис. 2. Топография локального участка поверхности пленки Ленгмюра — Блоджетт, нанесенной на пиролитический углерод и снятой в режиме Z(x, y) на СТМ при окне сканирования 15 × 15 Å, $U_t = 0,050$ В, $I_t = 0,75$ нА после термического отжига

кладки». Все углеводородные хвосты расположены перпендикулярно (вертикально) к плоскости подложки из углерода, а хвосты цетиламина заполняют пустоты [8]. После термической обработки пленки молекулы с короткими углеводородными хвостами цетиламина улетучились и остались амфифильные молекулы с относительно длинными углеводородными хвостами β -дикетоната. Ожидалось, что на СТМ-изображениях будут наблюдаться места посадки молекул с короткими хвостами цетиламина в виде квантовых ям с геометрическими размерами в плоскости ~3 × 4 Å. Однако, как видно из рис. 2 и 3, мы не обнаружили этих мест посадок молекул, а зарегистрировали модуляцию СТМ-изображения углеродом подложки.

Согласно работе [9], дальний трансляционный порядок в плоскости рассматриваемой пленки может быть частично нарушен из-за некоторого произвола в направлениях ориентации и наклона углеводородных хвостов молекул. О наличии наклона этих хвостов молекул сообщалось и в работе [10], например для стеариновой кислоты. Поэтому не исключено, что молекулы с длинными хвостами (β-дикетонат) после термической обработки расположились параллельно (горизонтально), а возможно, и под некоторым углом к поверхности подложки из ПУ под действием сил ван-дер-ваальсового или даже электростатического происхождения. Вследствие этого на СТМ-изображениях (рис. 2 и 3) отчетливо видны гряды этих молекул. Такое расположение молекулярных гряд непротиворечиво объясняет и модуляцию углеродом этих СТМ-изображений участков пленок, толщина которых значительно уменьшилась.

В формировании СТМ-изображений предполагается участие двух групп туннелирующих электронов. В первую входят неупруго туннелирующие электроны с поверхностных состояний ПУ с потерей энергии при прохождении пленки, во вторую — упруго туннелирующие электроны с занятых поверхностных состояний углеводородных хвостов на свободные поверхностные состояния зондирующего острия СТМ. Здесь уместно заметить, что сами углеводородные хвосты имеют высокую плотность поверхностных состояний в энергетическом спектре [11], что способствует неупругому туннелированию электронов с поверхности подложки. Кроме этого, присутствие цепочек сопряженных, или, что равнозначно, чередующихся, двойных и одиночных связей у рассматриваемых молекул также стимулирует перенос электронов через пленку на зондирующее острие СТМ.

Не исключен вклад в формирование СТМ-изображений ПУ под рассматри-

Рис. 3. Топография локального участка поверхности пленки Ленгмюра — Блоджетт, снятая на СТМ после термического отжига в режиме Z(x, y) при окне сканирования 22 × 22 Å при $U_{I} = -0.040$ В, $I_{I} = 1.0$ нА

ваемой пленкой Ленгмюра — Блоджетт (рис. 2 и 3) и механизма резонансного туннелирования через молекулярные и другие уровни пленки или образования коллективных электронных состояний, подробно описанных в работе [12].

Авторы выражают благодарность Фонду фундаментальных исследований Беларуси за поддержку и финансирование проекта Ф34-256, на основании которого выполнена настоящая работа, а также коллегам Г. К. Жавнерко и В. Е. Агабекову за предоставленные образцы пленок Ленгмюра — Блоджетт.

СПИСОК ЛИТЕРАТУРЫ

- 1. Binning G., Rohrer H.//IBM J. Res. Develop. 1986. V. 30. № 4. P. 355.
- 2. Алекперов С. Д., Васильев С. И., Леонов В. Б., Панов В. И., Семенов А. Э.//Докл. СССР. 1989. T. 307. № 5. C. 1104.
- 3. Endo T., Jamadu H., Sumomoji T., Kuwahara K., Morita S., Kino T.//Ultramicrosc. 1992. № 42-44. P. 614.
- 4. Васильев С. И., Леонов В. Б., Панов В. И.//Письма в ЖЭТФ. 1987. Т. 13. № 15. С. 937. 5. Васильев С. И., Моисеев Ю. Н., Никитин Н. Н., Савинов С. В., Яминский И. В.//Электрон. пром-сть. 1991. № 3. С. 36.
- 6. Жавнерко Г. К., Кучук Т. А., Агабеков В. Е., Кулинкович О. Г., Садовский О. Л.//Весці АНБ. Сер. хим. 1993. № 2. С. 44.
- 7. Солонович В. К., Кухаренко Л. В., Кмит В. М.//ВАНТ. Сер. ядерно-физ. исслед. (теория и эксперимент). 1992. Вып. 1 (22). С. 58.
- 8. Solonovich V. K., Sobol V. R., Kukharenko L. V., Mazurenko O. N., Zhavnerko G. K., Agabekov V. E.//Abstr. Intern. conf. on scanning tunneling microscopy. (STM-93), August 9-13. 1993. Beijing, China, P.--- D. Session. P. 3.
- 9. Garroff S., Deckmann H. W., Dunsmuir J. H., Alvares M. S.//J. Phys. 1986. V. 47. P. 701.
- 10. Chollet P. A., Messier J.//Thin Solid Films. 1983. V. 99. P. 197.
- 11. Блинов Л. М.//УФН. 1988. Т. 155. № 3. С. 443.
- 12. Маслова Н. С., Моисеев Ю. М., Панов В. И., Савинов С. В., Знамёнский Д. А.//ЖЭТФ. 1992. T. 102. № 3(9). C. 929.

Институт физики твердого тела и полупроводников Академии наук Беларуси