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Abstract -  A dislocation model that takes into account the presence of quasistationary states and the lattice 
dilatation in the region of a dislocation core is used to perform a calculation concerning the electrical resistivity 
of polyvalent and transition metals from dislocations and grain boundaries. A low-angle grain boundary is 
treated as a set of dislocations, while a high-angle grain boundary is considered as a set of cylindrical pores. 
When the dilatation was assumed to be dV = b \  (bB is the stable Burgers vector of a perfect dislocation), a sat
isfactory agreement with the experimental data was obtained.

INTRODUCTION

Dislocations and grain boundaries are the most 
widespread defects in metals and determine their 
strength characteristics and performance. The problem 
of high electrical resistivity of dislocations and grain 
boundaries was first considered several decades ago, 
but as yet no satisfactory explanation of this phenome
non exists. Initial calculations of the grain boundary 
(pg) [1*2] and dislocation (prf) [3, 4] contributions to 
electrical resistivity gave values of one or two orders of 
magnitude lower than those observed experimentally. 
Harrison [5], who took into account the lattice dilata
tion during plastic deformation and the fact that this 
dilatation was confined primarily within the region of 
the dislocation cores, was the first to obtain the correct 
order of magnitude for pd. However, this model 
explained neither the magnitude nor the sign of the 
effect of dislocations on thermal em f [6]. Further 
progress in studying the effects of dislocations on 
transport properties was made when quasistationary 
electronic states were taken into account [7, 8], the 
existence of which was theoretically predicted [9] and 
then confirmed experimentally [10]. The resonance scat
tering of conduction electrons at these quasistationary 
states, lying near the Fermi level, gave values of prf close 
to the experimental ones for a number of metals [7]; the 
best agreement was obtained in the case of nontransi
tion metals. In [11] a grain boundary was treated as a set 
of resonantly scattering dislocations. The grain bound
ary contribution to electrical resistivity, calculated 
within such a model, was shown to be o f the same order 
of magnitude as observed experimentally in nontransi
tion metals. However, this model, used in [7 ,9 ,11], was 
criticized for uncertainty in the nature o f perturbations 
leading to the appearance o f resonances; in addition, 
the resistivities, calculated within this model, appear to 
be independent o f the type o f dislocation and the mag
nitude o f its Buigers vector [12,13]. As to the calcula
tions o f pG in [11], we note that only the low-angle

grain boundaries with misorientation angle 0 < 15° can 
be described by a set of dislocations. In addition, the 
calculations of [11] were carried out for the particular 
case of columnar grains in thin films, and thus the dis
tance between dislocations, composing the grain 
boundary, was two to three times smaller than in bulk 
samples; being perpendicular to the current, such dislo
cations gave the maximum contribution to electrical 
resistivity.

A recent paper [13] proposed that the Bragg scatter
ing of conduction electrons at the boundaries o f the 
Brillouin zone caused the high electrical resistivity of 
dislocations in metals. With only one adjustable param
eter, numerical calculations for sixteen metals satisfac
torily agreed with experimental results.

References [6,14] explain the contributions of dislo
cations and grain boundaries to electrical resistivity and 
thermal emf of monovalent metals (Cu, Ag, Au) within a 
combined model that takes into account both the pres* 
ence of resonance quasistationary states and the known 
experimental data on the structure of dislocation core 
(namely, the lattice dilatation and excess negative charge 
caused by this dilatation) We use this approach to calcu
late the electrical resistivity of dislocations and grain 
boundaries in more complex polyvalent and transition 
metals. Because the potential used in this study differs 
from that used in [6,14], we present our calculations for 
copper and gold for the sake of completeness.

PRELIMINARY NOTES
The nearly complete occupation o f the first Bril

louin zone and its small overlapping with the second 
zone is the distinguishing feature o f the electronic 
structure in the divalent metals. For this reason, the 
concentration o f charge carriers in these metals is very 
small, and at present it can be evaluated from the band 
structure calculations only. The transport properties of 
transition metals (including ferromagnetic metals) are
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CALCULATION OF ELECTRICAL RESISTIVITY OF DISLOCATIONS 15

the phenomena most complex and difficult to explain, 
because these metals have two partially filled overlap
ping bands (5 and d) near the Fermi level, and the 
rf-band consists of two subbands with different spin ori
entations and different occupancies. The earlier theory 
of Mott [15] is the most suitable for describing the elec
tronic properties o f transition metals. According to this 
theory, because o f the narrowness o f the rf-band and the 
high degree o f its occupancy, the density o f states Nd 
and the effective mass of charge carriers (holes) m *  in 
transition metals are considerably higher in the rf-band 
as compared with the 5-band, that is Nd s> N, and 
mp > me . The holes essentially do not contribute to 
the transport phenomena, but they are effective scatter
ing centers for the s-electrons, because of the high 
probability o f s -d  transitions. It is assumed that the 
number of electrons o f spin up ( t )  in the 5-band is equal 
to the number of 5-electrons of spin down (4), and the 
scattering of ^-electrons to free s- and rf-states is not 
accompanied by flip. Such an assumption is valid in the 
lowest order of the perturbation theory if one neglects 
spin-orbit coupling.

The Mott theory proved successful in calculations 
of electrical resistivity o f vacancies in nickel [16]. The 
charge carrier concentration, necessary for these calcu
lations, was evaluated from the values o f an average 
magnetic moment Ц.. For Ni, which has |X = 0.54|iB and 
10(5 + ̂ -electrons per atom, the carrier concentration in 
the 5-band is ns = 0.54 electrons per atom; the same num
ber of holes is present in the d-band. In the case of Co, 
which has 9 (5 + ^-electrons per atom and ц  = 1.72|iB, 
ns = 0.72 electrons per atom. In these metals, according 
to the Hund rule, one of the J-subbands ( t )  is com
pletely occupied, and the other (4) is partially free, it is 
natural to suppose [16] that the effective number of 
charge carriers in the 5-band is n* = ns/ 2, because the 
spin down (4) 5-electrons scatter to the <i-subband, and 
only the remaining spin up ( t )  electrons from the 
5-band contribute to the scattering at defects. This is so 
for the metals situated at the end of the transition metals 
period, where N /e F) >  Ns(Ef)- However, for the metals 
from the beginning or the middle of the period (here 
these are Ti, Zr, Mo, and W) that have vacant states in 
both rf-subbands, it is more appropriate to consider that 
the probability of 5-electrons’ scattering to the vacant 
states o f the 5- and rf-bands is proportional to the elec
tronic densities of states in these bands. Then, accord
ing to [17], we can write

I  = J -  _L

where l s represent the relaxation times o f the corre
sponding scattering processes. If we assume that the 
coupling constants are the same, then X”1 and xj! 
become proportional to the densities o f states N, and Nd 
at the Fermi level. Therefore, the total concentration of 
5-electrons with spins up and down will be subdivided 
into two parts (i.e., n, = nsd + nss) in the proportion 
nsd/nss = Nd/N,. Thus, only nss electrons will contribute

to the scattering by the lattice defects, that is, the effec
tive number of charge carriers is n * = nss.

The values of ns and n *  for different metals, consid
ered in the present study, are presented in Table 1 
together with the structural data (the structure type and 
lattice parameters) and the group number in the Periodic 
Table. For metals such as Be, Zn, Cd, Al, Ti, Zr, Mo, W, 
and Pd the values of ns were taken from the band struc
ture calculations, reviewed and generalized in [7]. The 
effective charge carrier concentration n*  for Ti, Zr, 
Mo, and W  was evaluated from the data on the elec
tronic heat capacity coefficient, which is proportional 
to the electronic density of states at the Fermi level. 
According to the data, presented in [18], average values 
of у for Ti, Zr, Mo, and W  are respectively 8.1,6.9,5.0, 
and 2.6 in units of 10-4 cal mol-1 K-2. Expressed in the 
units o f the copper density o f states (the yCu value for 
copper is 1.66 x  10-4 cal mol-1 K-2 the densities of states 
Nd+S for these metals are 4.8, 4.1, 3.0, and 1.5, respec
tively. The density of states in the 5-band of these metals 
with respect to corresponding quantity in copper can be 
evaluated using the free-electron model if we assume 
that Ns(e.F) ~ n Y \  In such a way the densities of states in 
the 5-band of Ti, Zr, Mo, and W  can be estimated as 0.40, 
0.40,0.76, and 0.62 (in the units of the copper density of 
states). From these data we calculated the values of 
n„ = n * , presented in Table 1.

The effective Fermi wave vector of conduction elec
trons was calculated similarly to [16] as

k* = ( 3 * 4 ) 1/3, (1)

Table 1. Crystal structure, lattice parameters, and charge 
carrier concentration in metals under consideration

Metal Group
number Structure a,

10“lom
c,

10-10m
5̂»

electron 
per atom

ns*, 
electron 
per atom

Cu IB fee 3.61 1 1
Au IB fee 4.08 1 1
Be IIA hep 2.29 3.58 0.032 0.032
Zn ПВ hep 2.66 4.95 0.09 0.09
Cd IIS hep 2.98 5.62 0.095 0.095
Al IIIS fee 4.05 1 1
Ti IVB hep 2.95 4.69 0.065 0.0054
Zr IVB hep 3.23 5.15 0.065 0.0064
Mo VIВ bee 3.15 0.44 0.112
W VIВ bee 3.16 0.24 0.097
Fe VIII bee 2.87 0.22 0.11
Co VIII hep 2.51 4.07 0.72 0.36
Ni VIII fee 3.52 0.54 0.27 *
Pd VIII fee 3.89 0.55 0.275
Pt VIII fee 3.92 0.42 0.21
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16 KAROLIK, GOLUB

where ne = n * /  Q is the effective charge carrier concen
tration per unit volume; Q  is the atomic volume (in what 
follows we will omit the sign * as a superscript to kF).

CALCULATION OF ELECTRICAL RESISTIVITY 
OF DISLOCATIONS

Calculations of the scattering cross-section Q of 
conduction electrons by dislocations was carried out 
using the partial-waves technique. In our calculations 
we supposed that the main contribution to the scatter
ing of electrons arises from the cores of dislocations, 
and we thus neglected the scattering by elastic fields of 
dislocations. The values of Q were calculated by solv
ing the Schrodinger equation for the axially symmetric 
potential of the type

V (r) =
-V , r < R ,

V0, — r — ^2
0, r > R 2 .

(2)

er ~ eF =
71 l2 
2m (3)

V (r, z, ф) = e ‘г £  Pn (r)  ealn Ф

Substituting this function in the Shrodinger equation, 
we obtain the equation for the radial function

P n" + - P '  +П у n
2 2m n

k± W  Л
Pn = 0, (5)

This was done because only electrons with energy 
close to eF (within several thermal energies) contribute 
to the transport properties. The height of the potential 
barrier V0 was chosen based on the screening condition 
for the defect charge by the cloud of rearranged con
duction electrons.

Because of the cylindrical symmetry o f the prob
lem, we can represent the wave function in the form

(4)

where kL = {k2F- k \ ) xn is the transverse component
of the wave vector. Therefore, the problem reduces to 
the Bessel equation, the solutions to which are the 
Bessel functions with the arguments, iCq/; кг, and kLr in 
the regions r < Rb Rx < r < R2, and r > R2, respectively, 
where the quantities к  = [к \  + (2m /h 2)V]in and 

Ко = [&i — (2m / О Д Ш- The phase shifts were calcu
lated using the scattering matrix formalism. There are 
two linearly independent solutions of (5), <pj[n and (p£„,
corresponding to the incident and scattering waves. It is 
known that if we construct the regular in zero function

<pkn = a n (io<Pi

the scattering matrix will take the form

The potential of this type allows accounting for the main 
features of lattice distortions in the region of dislocation 
core, namely, the lattice expansion region that contains 
an excess negative charge and the adjacent region of the 
lattice compression, the presence of which is the reason 
for formation of quasistationary states with small life
times T ~ Л /  Г, where Г  is the width of the level. Potential 
of the same type was obtained in [19] for a screw dislo
cation, using the pseudoatomic model that takes into 
account the atomic displacements in the region of dis
location core and the deformation of elastic continuum 
of the surrounding matrix. Among the potentials, lead
ing to quasistationary states in the positive energy 
range, the potential (2) is the simplest one. We assume 
that the external radius of the potential R2 is equal to the 
atomic radius. For the internal radius we took Rl =R 2/ 2. 
The latter choice is somewhat conditional, but it does 
not affect significantly the results. The potential well 
depth V was adjusted to make the position of the qua
sistationary level er coincident with the Fermi energy eF

Sn (k)  =
М Ю

(6)

(7)
М Ю ’

where k = fc, + ik2 is the generalized wave vector.

As the most general solution to (5), we choose the 
function cp+n =  P£n ( r ) *n form

ф£п =

H (nl ) (k1_ r ) ,r> R 2

c n К  ( V )  +  d nK n (K0r) , R i ^ r < R 2

gnH (nl) (кг) + /X 2) ( K r ) , r < t f ,  .

(8)

The solution ф” is obtained as a complex conjugate. 
The analysis of these solutions shows that the scattering 
matrix can be represented as

s . m  =
f n* - 8 n *

Sn f 1
(9)

Using this expression, we can determine the phase shifts 
accounting for the quasistationary states. It is known 
that these states correspond to the complex poles of 
S„(k) in the lower semiplane of the wave vector k. Qua
sistationary levels are characterized by the resonance 
energy Eq and the width of the resonance Г. These quan
tities are related to the components of the complex 
wave vector +  ik2, at which the scattering matrix has 
a pole, as follows

e ° = 2 -  ( *S)a l ;

Г = — к°к°1 12" m

(10)
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CALCULATION OF ELECTRICAL RESISTIVITY OF DISLOCATIONS 17

The most general expression for 5„(k) with a pole deter
mining the quasistationary level is

e - £0,n-
' Г п

2
iT

e - eo.»+ T

(11)

where Т|„ and a n are the total and potential scattering 
phases. For the total phase we obtain

Л = a -  a tan'Л П
2 ( e - e 0.n)

( 12)

Here P„ is the resonance scattering phase. Far from the 
resonance the contribution of the resonance term to r)„ 
decreases considerably, and the scattering matrix can 
be written as

■2a
(13)

Comparing (13) and (9), we obtain for the potential 
phase

tana. = I m ( f n - g n) 
Re (g„ - f n)

Using the condition of continuity of the wave function 
and of its first derivative at the points /?, and R2 we 
finally obtain

tana = — , 
"

(14)

where

(^ 1 ^ 2) Л +1 ( K^ i )  [ / .  ( к о^г) К  (k 0/?,)

In(K0R l ) Kn(K0Rz) ]

+ KK„Я™, ( М г ) Л  + 1 № )  [/„ (к0л,) Кп + 1(к0Я2)

+ In + i(K 0R2) K n(K0R l) ]

= КЛ ^ 1 \  ( М 2) Jn ( K * , )  [In+, ( K 0/ ? , )  (к 0л 2)

+ / n (K0/?2) ^ +i(K0/?i) ]

+ k 2̂ 0 ( М 2) Jn ( к * , )  [ / .+ ,  (K0/?,) ATB+, (K0/?2)

-  / я + 1(КоЛ 2 ) ^ я + 1(КоЛ 1) ] • (15)
Solving this equation, we determine the parameters of 
the resonance level e0i „ and Г„, as well as the resonance 
phase shift P„.

The transport scattering cross section Q, averaged 
over the angle cp, is expressed through the phase shifts 
as follows:

n / 2  00

Q = w  J  2 sin2 (г» п - г1„+1>^ф- (i6) 
F  0 "  =  0

Within the relaxation time approximation, the change 
in electrical resistivity per unit dislocation density is

m* v f Q h kFClQ
* 2 ns e

(17)

= Кk± { Jn' (K/?,) Jn' ( М 2) V ,  (K0/?2) Kn ( К Д )  

-  / « (Ko^j) Kn (К0Я2) ] }

+ KK0 {J ( к Rx) Jn ( М 2) Vn (K0R t) Kn' (к 0R2) 

- / „ ' ( к / ^ Л к Д )  ] }

+ к 0k± {J n (K/?,) 7„' ( М 2) [ / . ’ (*o*i) Kn ( M 2) 

- / „ ( K ^ x ; ^ , )  ] }

+ к 2 { Jn ( K t f ,) Jn ( М 2) [ / . '  (к 0Л2) Kn' ( K ^ , )

and £„ can be obtained by substituting the functions 
Nn(k±R2) and Л Г Л М 2) for 7п(М г )  and Jn'(kxR2), 
respectively.

To calculate the resonance levels, one has to find the 
poles of the scattering matrix, that is, the roots of the 
equation c„ = dn; the complex nature of these roots 
should be taken into account. The solution o f the prob
lem leads to the equation

where m* is the effective mass of charge carriers equal 
to hkF/ vF.

The height of the potential barrier V0 was deter
mined from the screening condition, which for linear 
defects has the form [4]

2k */2
= J Ya Лв(ф)яп<Мф, (18)

0 n = -~
where £ is the linear charge density along the disloca
tion line, expressed in units of electron charge. Accord
ing to [20], the lattice dilatation in the region of 
dislocation core, calculated per unit dislocation length, 
lies in the range dV = b \ -  Ab\. In the present work 
we assume that dV  = b2B and, therefore, % is deter
mined as % = dV /C l. Only the stable Burgers vectors bB 
of perfect dislocations in corresponding crystal struc
tures were considered, i.e., we have chosen bB equal to

1/2<110) or a  7 2  /2  for fee metals; l/2< 111> and <100> or
a j b l 2  and a for bcc metals; and 1/3(1120) and (0001) 
or a and с for hep metals (a and с are the lattice param
eters). Table 2 presents the results of the calculations of 
pd /  Nd. Two values, given for some metals, correspond 
to the smaller and larger Burgers vectors. For the 
smaller bB we also present the potential parameters V 
and V0 and the width of the resonance level Г. For com
parison we include in Table 2 the results of calculations 
of other works, as well as the experimental data avail
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18 KAROLIK, GOLUB

Table 2. Parameters of scattering potential and resistivity of the unit density of dislocations

Metal V, 1СГ19 J v„ , io-19j r ,  io-19 J

p d!Nd, 10-13 cm3

This work
Previous calculations 

[7] [13]
Experimental data

Cu 28.2 15.0 4.1 1.7 1.3 0.78 1.6±0.2* 2.3 [23]
Au 22.0 11.7 3.3 2.4 1.9 1.2 2.6 1.9 [25]
Be 47.9 39.3 0.9 7.3 -18.2 28.0 22.0 34.0 3.0 - 25.0**
Zn 23.7 22.3 1.3 5.5 - 26.9
Cd 18.7 17.6 1.1 7.7 - 36.3 25.0 7.3 24 5**
A1 22.9 12.2 3.1 2.5 1.8 1.0 1.7 ±0.3 3.2 [23]
Ti 22.9 21.1 1.0 94.3 - 370.4 29 100
Zr 19.4 17.7 0.8 101.7-371.6 40 15 100 40**
Mo 19.8 16.0 3.1 9.8 -16.0 3.7 3.8 5.8 22 [24]
W 20.6 18.7 2.3 7.7 -12.5 7.4 12.5 7.5 19 [25]
Fe 24.4 22.7 2.8 4.7 - 8.1 1.9 9.1 10 ± 4 7 ± 3**
Co 27.5 17.9 4.1 3.4 -10.0
Ni 27.2 20.0 3.7 3.8 1.1 3.0 10 2.8 ± 0.5**
Pd 22.1 16.2 3.1 5.1
Pt 21.4 17.2 2.8 5.6 4.0 2.5 9 3.5**

Note: *  cited in Ref. [7].
* *  cited in Ref. [  13].

able in the literature. In our calculations we satisfy the 
screening condition (18) within an accuracy of 10-2 and 
take into account six (n = 6) phases.

CALCULATION OF ELECTRICAL RESISTIVITY 
OF GRAIN BOUNDARIES

Presently, it is beyond question that the low-angle 
grain boundary (that is, the boundary with the misori- 
entation angle 0 up to 10 -15°) consists o f separate dis
locations. In the symmetrical tilt boundaries o f cubic 
lattices the spacing between dislocations is

D l =
2 sin ( 0 / 2 )

bs
0 (19)

An asymmetric low-angle grain boundary that has both 
tilt and twist components can generally be described by 
three independent sets o f dislocations with noncoplanar 
Burgers vectors. We consider, for simplicity, only the 
symmetric tilt boundaries with misorientation axes 
along the directions (100) for fee, (110) for bcc and 
(0001) for hep structures. As shown in [14], the change 
in electrical resistivity per unit density o f a low-angle 
grain boundary is

P в  Pd
NdDl

(20)

etc. Reference [21] reviews these models. These models 
share one common feature that differentiates them from 
the models of low-angle grain boundaries. This feature 
is the considerably higher looseness, or porosity, of the 
high-angle grain boundary. Atomistic calculations of 
stable configurations clearly show that cylindrical pores 
are present inside the high-angle grain boundaries [22]. 
For this reason, in the present work we approximated 
the high-angle grain boundary (15° < 0 < 45°) by a set 
of cylindrical pores. According to [2], the spacing 
between the pores in cubic lattices is given by 
Dh = a l  2sin(0/2).

In hg> crystals we considered the tilt boundaries in 
the {1120} planes, formed by linear defects parallel to 
the (0001) direction. Taking into account that in hep 
crystals gliding proceeds along the most closely packed 
planes {0001}, we assumed the spacing D  between lin
ear defects in both low- and high-angle boundaries to be

D  =
a  sin (60° -  0 /2 )

(2 1 )2sin ( 0 / 2 )  *
The electrical resistivity of high-angle grain boundaries 
was calculated as

p£
Nn

P ,
NpD h

(22)

There are a great number o f models for high-angle grain 
boundaries. These are the model o f amorphous layer, the 
model o f islands, the model erf liquid boundary, the 
model of partial dislocations, the disclination model,

where pp /  Np is the electrical resistivity o f cylindrical 
pores evaluated using (17) with the scattering cross sec
tion Q  given by (16). The phase shifts ti„, entering into 
(16), were calculated using the axially symmetrical 
potential o f the type
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РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



CALCULATION OF ELECTRICAL RESISTIVITY OF DISLOCATIONS 19

Table 3. An increase of electrical resistivity per unit density of cylindrical pores and grain boundaries, averaged in 
corresponding ranges of misorientation angles

Metal Pp! Np, 
10"13 |l£2 cm3

P'q /N g, 
10-12 Cl cm2

P h0 fNG, 
10-12 Q cm2

p G! Ng , 10rl2£2cm2

This work Previous 
calculations [11] Experimental data

Cu 2.4 0.9 4.0 2.9 2.2 1.8-3.1*
Au 3.4 1.1 5.0 3.7 2.8 3.5*
Be 3.5 -14.9 5.0-12.5 8.0 - 33.7 6.5 - 23.1
Zn 5.7 - 28.5 3.3 -16.0 11.0-55.4 7.1 - 35.7 27.1 4.0-55.0 [26]
Cd 7.9-40.0 4.1 -19.2 13.8-69.5 8.9-44.4 32.6 15.0-19.1 [26]
A1 3.4 1.1 5.0 3.7 2.7 1.1-2.4*
Ti 94.7 - 354 50.5 -198 166 - 623 108 - 410
Zr 104 - 399 49.8-179 166 - 640 108 - 409
Mo 9.9 -12.0 4.7 - 6.7 18.9 - 22.9 14.2 - 17.5 18.0 8.8*
W 7.2 - 8.9 3.7-5.2 13.7 -16.4 10.4 - 12.6 22.0 20*
Fe 4.6 - 5.6 2.5 - 3.7 9.6-11.7 7.2-9.1 6.2 80 -160*
Co 4.7 -10.3 2.2 - 6.3 9.6-21.3 5.9 -13.8 2.4 5.0*
Ni 5.9 2.0 10.1 7.4 1.9 5.0 -14.0*
Pd 7.9 2.4 12.2 8.9
Pt 9.0 2.7 13.7 10.1

Note: * cited in Ref. [13].

V(r)  =
V0, r £ R 2

0, r >  R2.
(23)

For this potential, the expression for Ti„ was obtained 
in [14]. The linear charge density £ was assumed to be 
the same as for dislocations.

The range o f misorientation angles from 10 to 25° 
was treated as a transient one, that is, we supposed that 
the grain boundaries with such misorientations con
sisted o f both dislocations and cylindrical pores. With 
increasing 8 the fraction o f dislocations x  decreases and 
the fraction o f pores (1 -  jc) increases. The electrical 
resistivity o f grain boundaries pG /  NG in this range of 
misorientation angles was calculated as

P g
" a

x p d ( l - x ) P p

D ‘N , D HN„
(24)

From the crystal symmetry considerations it follows 
that the misorientation o f the lattice with respect to 
directions considered here has the periodicity n /2  for 
the cubic structures and л /3  for the hep structure. 
Therefore, the maximum misorientation is 0 = 45° for 
the bcc and fee metals and 0 = 30° for the hep metals.

The calculated grain boundary contributions to elec
trical resistivity pG /  NG, averaged over misorientation 
angles of 0 to 45° for the cubic metals and 0 to 30° for 
the hep metals, are presented in Table 3. Also presented 
are the values o f electrical resistivity o f cylindrical 
pores per their unit concentration pp /  Np, and the mean 
values o f electrical resistivity o f low-angle and high-

angle grain boundaries, averaged over the correspond
ing angular intervals. The results o f [11] on calculations 
o f pg I N g and available experimental data are also 
included for comparison. The mean distances between 
linear defects injow-angle and high-angle ranges were 
assumed to be D[cc = 5.4a, D*cc = 1.7a, D lbcc=  6.6a, 
D jcc = 1.7a, and Dhc p = 3.0a.

CONCLUSION

We calculated the values of electrical resistivity of 
dislocations and grain boundaries in polyvalent and 
transition metals, using the model that takes into 
account the lattice dilatation in the region of dislocation 
core and the presence of quasistationary states. Based 
on the data presented in Tables 2 and 3, we may con
clude that the calculated results agree fairly well with 
the available experimental data. In most cases the 
agreement with experimental data is better than in ear
lier calculations.

REFERENCES

1. Guyot, R, Contribution & la Thlorie de la R6sistivit6 
filectrique des Joins de Grains M6taliques, Acta Metall., 
1959, vol. 7, pp. 495 - 503.

2. Van der Voort, E. and Guyot, P., On the Electrical Resis
tivity by Scattering on Metallic Grain Boundaries, Phys. 
Status Solidi B, 1971, vol. 47, pp. 465 - 473.

3. Hanter, S.C. and Nabairo, F.R.N., The Propagation of 
Electrons in a Strained Metallic Lattice, Proc. Roy. 
Soc. A, 1953, vol. 220, pp. 542 - 561.

THE PHYSICS OF METALS AND METALLOGRAPHY Vol. 75 No. 1 1993

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



20 KAROLIK, GOLUB

4. Stehle, H. and Seeger, A., Elektronentheoretische Unter- 
suchungen iiber Fehlstellen in Metallen, Z. Phys., 1956, 
vol. 146, pp. 217 - 268.

5. Harrison, W. A., Resistivity due to Dislocation in Copper, 
J. Phys. Chem. Solids, 1958, vol. 5, pp. 44 - 46.

6. Lukhvich, A. A. and Karolik, A.S., Calculations of Dislo
cation Contribution to Electrical Resistivity and Thermal 
EMF, Caused by Resonance Scattering, Fiz. Met. Metall
oved., 1982, vol. 54, no. 5, pp. 909 - 914.

7. Brown, R.A., Electrical Resistivity of Dislocations in 
Metals, J. Phys. F: Metal. Phys., 1977, vol. 7, 
pp. 1283 - 1295.

8. Fokel, H.-J., Gebundene und Quasistationare Zustande 
von Elekronen an Versetzungen in Metallen, Wiss. Zeit. 
PH Dresden, 1978, vol. 12, pp. 49 - 55.

9. Brown, R.A., Electron and Phonon Bound States and 
Scattering Resonances for Extended Defects in Crystals, 
Phys. Rev., 1967, vol. 156, pp. 889 - 902.

10. Gantmakher, V.F. and Kulesko, G.I., Temperature 
Dependence of Electron Scattering Cross-Section at Dis
locations in Metals, Zh. Eksp. Teor. Fiz., 1974, vol. 67, 
pp. 2335 - 2340.

11. Brown, R.A., Dislocation Model of Grain Boundary 
Electrical Resistivity, J. Phys. F: Metal. Phys., 1977, 
vol. 7, pp. 1477 - 1488.

12. Rouh, H„ Untersuchungen zum Elektrischen Widerstand 
von Versettzungen in Metallen, Phys. Status Solidi B, 
1980, vol. 100, pp. 201 - 214.

13. Watts, B.R., Calculation of Electrical Resistivity Pro
duced by Dislocation in Various Metals, J. Phys. F: 
Metal. Phys., 1988, vol. 18, pp. 1197 - 1209.

14. Karolik, A.S., Calculation of Grain Boundary Contribu
tion to Electrical Resistivity and Thermal EMF of Metals 
(Cu, Ag, Au), Fiz. Met. Metalloved., 1988, vol. 65, no. 3, 
pp. 463 - 470.

15. Mott, N.F., The Resistance and Thermoelectric Proper
ties of the Transition Metals, Proc. Roy. Soc. A, 1936, 
vol. 156, pp. 368 - 382.

16. Seeger, A., Elektronentheoretische Untersuchungen iiber 
Fehlstellen in Metallen. I. Gitterfehlstellen in Nickel, 
Kobalt und Ihren Legierungen, Z. Phys., 1956, vol. 144, 
pp. 637 - 647.

17. Blatt, F., Physics of Electronic Conduction in Solids, 
McGraw-Hill, New York, 1968.

18. Nemnonov, S.A., Electronic Structure and Some Proper
ties of Metals and Alloys from the 1st, 2nd, and 3rd 
Large Periods, Fiz. Met. Metalloved., 1965, vol. 19, 
no. 4, pp. 550 - 568.

19. F6kel, H.-J., Stationary and Resonance States at the Core 
of a Screw Dislocation and Their Contributions to Elec
trical Resistivity, Phys. Status Solidi B, 1987, vol. 139, 
pp. 59 - 66.

20. Kulman-Wilsdorf, D., Physical Metallurgy, Cahn, R.W., 
Ed., Mir, Moscow, 1968, vol. 3, pp. 7 - 3 4  (Russian 
translation).

21. Gleiter, H. and Chalmers B., High-Angle Grain Bound
aries, Progress in Materials Science, Pergamon, Oxford, 
New York, 1972, vol. 16.

22. Hasson, G.C., Guillot, J.B., Baroux, B., and Goux, C., 
Structure and Energy of Grain Boundaries: Application to 
Symmetrical Tilt Boundaries around (100) in Al and Cu, 
Phys. Status Solidi A, 1970, vol. 2, pp. 551 - 558.

23. Basinski, Z.S., Dugdale, J.S., and Howie, Д., The Elec
trical Resistivity of Dislocations, Philos. Mag., 1963, 
vol. 8, pp. 1989 - 1997.

24. Gierrak, Z., Moron, J.W., and Lehr, A., Recovery of Struc
tural Defects in Molybdenum, Phys. Status Solidi A, 1983, 
vol. 77, pp. 775 - 783.

25. Shultz, H., Untersuchungen iiber Gitterfehlstellen in 
Kaltverformten Wolfram mit Hilfe von Restwider- 
standmessungen, Z. Naturforsch. A, 1959, vol. 14, 
pp. 361 - 373.

26. Aleksandrov, B.N., Kan, Ya.S., and Tatishvili, D.F., 
Influence of Grain Boundaries on the Residual Resis
tance of Tin, Cadmium, Zinc, and Indium, Fiz. Met. Me
talloved., 1974, vol. 37, no. 6, pp. 1150 - 1158.

THE PHYSICS OF METALS AND METALLOGRAPHY Vol. 75 No. 1 1993

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ




