известия АКАДЕМИИ НАУК БССР

Серия химических наук

ВЗДАТЕЛЬСТВО «НАУКА И ТЕХНИКА» 1968,

СИНТЕЗ ПРОИЗВОДНЫХ ИЗОБУТИЛИДЕНАЦЕТОФЕНОНА

В предыдущем сообщении [1] было показано, что альдольно-кротоповая конденсация ацетофенона и его гомологов с уксусным альдегидом в щелочной среде при температуре —15—+10° может быть с усиехом использована для синтеза жирно-ароматических α,β-непредельных кетонов. Однако распространить эту реакцию на получение гомологов изобутилиденацетофенона в условиях пониженной температуры оказалось невозможным вследствие малого выхода непредельного кетона. В связи с тем, что гомологи изобутилиденацетофенона в ряде случаев используются в синтетических целях, представлялось интересным подобрать условия получения их альдольно-кротоновой конденсацией соответствующих производных ацетофенона с изомасляным альдегидом.

В настоящей работе показано, что реакция конденсации 4-метил-, 4этил-, 3,4-диметил-, 2,5-диметил и 2,4-диметилацетофеноиа с изомасляным альдегидом в щелочной среде в растворе метанола может быть использована в качестве удобного метода синтеза гомологов изобутилиденацето. фенона с выходом до 82%.

Эта реакция протекает аналогично конденсации самого ацетофенона с изомасляным альдегидом [2] через образование димера циклобутановой структуры (A) или же структуры (Б) [3]. При термическом расщеплении в присутствии безводного ацетата натрия полученные димеры, выход которых в подобранных нами условиях составлял 92-98%, превращаются в соответствующие α,β непредельные кетоны (IV—VIII) с выходом

65-82%:

$$Ar-CO-CH_{3}+O=CH-CH \stackrel{CH_{3}}{\stackrel{CH_{3}}{\longrightarrow}} OH^{-}$$

$$Ar-CO-CH-CH-CH (CH_{3})_{2}$$

$$Ar-CO-CH-CH-CH (CH_{3})_{3}$$

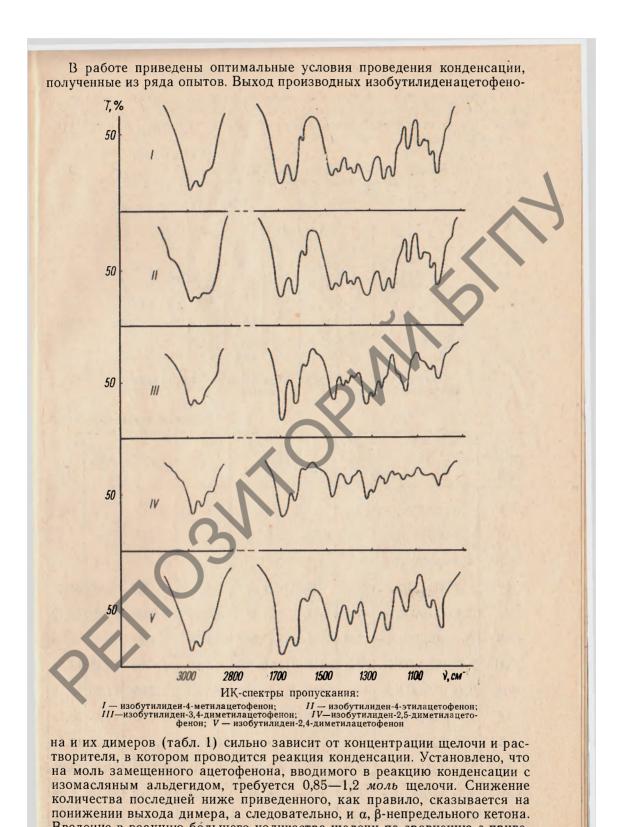
$$Ar-CO-CH-CH-CH (CH_{3})_{4}$$

$$Ar-CO-CH_{2}-CH-CH (CH_{3})_{2}$$

$$Ar-CO-CH_{2}-CH-CH (CH_{3})_{2}$$

$$Ar-CO-CH_{2}-CH-CH (CH_{3})_{2}$$

$$Ar-CO-CH_{3}-CH_{3}$$


$$Ar-CO-CH_{4}-CH_{3}$$

$$Ar-CO-CH_{5}-CH_{5}$$

$$Ar-CO-CH_{5}-CH_$$

 $(I, IV) Ar = 4 - CH_3C_6H_4; (II, V) Ar = 4 - C_2H_5C_6H_4; (III, VI) Ar = 3,4 - (CH_3)_2C_0H_3;$ (VII) $Ar=2,5-(CH_3)_2C_6H_3$; (VIII) $Ar=2,4-(CH_3)_2C_6H_3$.

В случае 4-метил-, 4-этил- и 3,4-диметилацетофенона были выделены димеры (I—III). Для 2,5-диметил- и 2,4-диметилацетофенона продукты димеризации в чистом виде не выделялись, а непосредственно после удаления щелочи и непрореагировавшего кетона термически деполимеризовались в а, в-непредельные кетоны.

Введение в реакцию большего количества щелочи по сравнению с приве-

для проведения реакции конденсации оказался метанол. Строение полученных α, β-непредельных кетонов было доказано избирательным гидрированием их над палладиевой чернью в циклогексене [4] до соответствующих предельных кетонов, а также при помощи ИКспектров (рисунок).

Таблица 1 Влияние концентрации щелочи на выход димеров (I—III) и α,β -непредельных кетонов (IV—VIII) при 50—52 °C

A	Выход димеров, 0/0			Выход кетонов, %					
	I	11	111	IV	v	VI	VII	VIII	
8 10 12 14 16 18 20 22 24	74,5 84 86 90 92 92 — —		64 85 89,5 92 93,5 96,5 97 97	52 58,5 60 63 65 65 —————	35 40 49,5 52,5 59,5 69,5 73,5	41,5 55,5 58,5 60 61 63 63,5 63,5	73,5 77 78,5 79 82 82 82	62 65 67,5 72 80,5 80,5 —	

Примечание. В графе A приведено гКОН/0,3 моль замещенного ацетофенона + 100 мл метанола.

Свойства и данные анализов

	№ соеди- нения	Ar	выход. %	Т.пл. (бензол- метанол) Т.кип. (Р в мм)	d ₄ ²⁰	n_D^{20}	MR _D	МК.	
	I	n-CH ₃ C ₆ H ₄ -	92	129,5—130	_	_	_	_	
	II	$n-C_2H_5C_6H_4$	98	108108,5	_	_	_	_	
	Ш	3,4—(CH ₃) ₂ C ₆ H ₃ —	97	127—127,5	_	-	-	-	
	IV	4—CH ₃ C ₆ H ₄ —	65	110—112 (0,5)	0,9709	1,5395	60,16	58,18	
	v	4—C ₂ H ₅ C ₆ H ₄ —	73,5	117—118 (0,5)	0,9672	1,5346	64,97	62,79	
/	VI	3,4—(CH ₂) ₂ C ₆ H ₃ —	63,5	127—129 (0,6)	0,9759	1,5434	65,26	62,79	
	VII	2,5—(CH ₃) ₂ C ₆ H ₃ —	82	112—114 (0,5)	0,9599	1,5330	65,29	62,79	
	vni	2,4—(CH ₃) ₂ C ₆ H ₃ —	80,5	115—116 (0,5)	0,9654	1,5342	65,00	62,79	
•	IX	4—CH ₃ C ₆ H ₄ —*	84	85-86 (0,3)	0,9475	1,5105	60,20	58,73	
	x	4—C ₂ H ₅ C ₆ H ₄ —	86	95—96 (0,3)	0,9412	1,5095	64,75	63,35	
	XI	3,4—(CH ₃) ₂ C ₆ H ₃ —	80,5	88—89 (0,3)	0,9511	1,5180	64,99	63,35	
	XII	2,5—(CH ₃) ₂ C ₆ H ₃ —	69	105—106 (0,6)	0,9471	1,5140	64,72	63,35	
	XIII	2,4—(CH ₃) ₂ C ₆ H ₃ —	79	82—84 (0,3)	0,9486	1,5120	64,52	63,35	

^{*} По данным [6] т. кип. 156—157° (14 мм); семикарбазон — т. пл. 178—179°

 $\begin{array}{c} \text{Ar-CO-CH-CH-CH} \swarrow_{\text{CH}_3} & \rightarrow \text{Ar-CO-CH}_2\text{-CH}_2\text{-CH}_2\text{-CH}_3\\ \text{(IV-VIII)} & \text{(IX-XIII)}\\ \text{Ar=4-CH}_3\text{C}_6\text{H}_4; \ 4\text{-C}_2\text{H}_6\text{C}_6\text{H}_4; \ 3,4\text{-(CH}_3)_2\text{C}_6\text{H}_3; \ 2,5\text{-(CH}_3)_2\text{C}_6\text{H}_3; \ 2,4\text{-(CH}_3)_2\text{C}_6\text{H}_3. \end{array}$

Интенсивные полосы в области 1680 см-1 и 1630 см-1 в непредельных кетонах (IV-VIII) отвечают соответственно валентным колебаниям сопряженной карбонильной группы и двойной связи. В предельных кетонах (IX—XIII), полученных гидрированием α , β -непредельных кетонов, полоса поглощения C=O группы находится в области 1690-1695 см $^{-1}$. Смещение полосы поглощения в сторону более низких частот в а, β-непредельных кетонах (IV-VIII) объясняется наличием сопряжения -C= =С— с карбонильной группой [5].

Характеристика полученных соединений приведена в табл. 2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные кетоны получались по Фриделю — Крафтсу из соответст-

Таблица 2

синтезированных соединений

Найдено, %			Вычислено, %		2,4-Динитрофенилгидразон-семикарбазон				
С	Н	Формула	С	Н	т.пл.	найдено, % N	формула	вычис- лено, % N	
82,64 82,76	8,62 8,75	$C_{26}H_{32}O_2$	82,95	8,51	_	-			
83,10 83,27	9,07 9,13	$C_{28}H_{36}O_2$	83,16	8,91	_	-11	_	_	
82,89 83,05	9,00 9,11	$C_{28}H_{36}O_2$	83,16	8,91	-	15.20		-	
82,77 82,95	8,65 8,52	$C_{13}H_{16}O$	82,95	8,51	154,5— 155	15,32 15,20	$C_{19}H_{20}N_4O_4$	15,21	
83,16 82,91	9,01 8,97	C ₁₄ H ₁₈ O	83,16	8,91	133 — 133,5	14,41	C ₂₀ H ₂₂ N ₄ O ₄	14,65	
82,90 83,01	8,85 8,70	C ₁₄ H ₁₈ O	83,16	8,91	181,5— 182	14,50	$C_{20}H_{22}N_4O_4$	14,65	
83,28 83,36	8,69 8,78	C ₁₄ H ₁₈ O	83,16	8,91	130— 130,5	14,88	$C_{20}H_{22}N_4O_4$	14,65	
83,36 82,90	9,04 9,11	C ₁₄ H ₁₈ O	83,16	8,91	142,5— 143	14,68	C ₂₀ H ₂₂ N ₄ O ₄	14,65	
-	-	-11		_	178— 178,5*	16,71 16,84	$C_{14}H_{21}N_3O$	17,10	
82,42 82,55	9,75 9,60	C ₁₄ H ₂₀ O	82,35	9,80	168— 168,5	15,86 15,97	$C_{15}H_{23}N_3O$	16,09	
82,16 82,40	10,01 9,95	C ₁₄ H ₂₀ O	82,35	9,80	155— 155,5	16,31 16,22	$C_{15}H_{23}N_3O$	16,09	
82,50 82,29	9,70 9,61	C ₁₄ H ₂₀ O	82,35	9,80	142— 142,5	15,88 15,97	C ₁₅ H ₂₃ N ₃ O	16,09	
82,10 82,24	9,59 9,71	C ₁₄ H ₂₀ O	82,35	9,80	148— 148,5	16,27 15,90	C ₁₅ H ₂₃ N ₃ O	16,09	

гидом. К раствору 0,3 моль кетона и 16—22 г едкого кали в 100 мл метанола в течение 10—15 мин при 50—52° прибавили при интенсивном перемешивании эквимолярное количество альдегида. Затем реакционную смесь перемешивали при этой же температуре до образования осадка (при отсутствии последнего перемешивание продолжали в течение 1 час), охладили до комнатной температуры, разбавили водой и нейтрализовали уксусной кислотой. Осадок отфильтровали, промыли водой и метанолом. После трехкратной перекристаллизации из смеси бензол-метанол получены димеры (I—III). Деполимеризация последних проводится в вакууме 1 мм при температуре бани (сплав Вуда) 200—220° в присутствии безводного ацетата натрия. В случае 2,5-диметил- и 2,4-диметилацетофенона после нейтрализации реакционной смеси органическую часть экстрагировали дихлорэтаном и вытяжки тщательно промывали водой. После отгонки дихлорэтана и непрореагировавшего кетона остаток разгоняли в вакууме в присутствии безводного ацетата натрия.

Полученные α, β-непредельные кетоны представляют собой подвижные, почти бесцветные жидкости со слабым запахом, нерастворимы в воде, хорошо растворимы в обычных органических растворителях. 2,4-Динитрофенилгидразоны их — красные игольчатые кристаллы (из смеси хлороформа с метанолом). Гидразон кетона (VII) легко кристаллизуется из этанола.

Избирательное гидрирование гомологов изобутилиденацетофенона (IV—VIII). 0,03 моль кетона, растворенного в 80 мл циклогексена, кипятили с обратным холодильником в присутствии 300—350 мг палладиевой черни в течение 30—40 час, после чего палладиевую чернь отфильтровывали, а остаток после удаления избытка циклогексена и образовавшегося бензола разогнан в вакууме. Предельные кетоны (IX—XIII) представляют собой подвижные бесцветные жидкости со слабым запахом, которые хорошо растворяются во всех органических растворителях. Семикарбазоны их — белые игольчатые кристал-

ИК-спектры полученных α, β-непредельных кетонов (IV—VIII) сняты на спектрофотометре UR-10 в области пропускания призм NaCl (1800— 800 cm^{-1}) и LiF (3600—2800 cm^{-1}). При снятии спектров использовалась жидкая пленка указанных соединений при толщине поглощающего слоя 0,005 мм.

Выводы

Изучена реакция конденсации 4-метил-, 4-этил-, 3,4-диметил-, 2,5-диметил- и 2,4-диметилацетофенона с изомасляным альдегидом в присутствии едкого кали в растворе метанола. Показано, что эта реакция, протекающая через образование димеров как промежуточных продуктов, может быть использована для получения с хорошим выходом соответствующих α, β-непредельных кетонов жирно-ароматического ряда. Сняты ИК-спектры полученных кетонов.

Литература

- 1. Станишевский Л. С., Тищенко И. Г. Весці АН БССР, сер. хімічн. навук,
- № 1, 123, 1967. 2. Kulka K., Eiserle R. S., Rogers S. A., Richter F. W. J. Org. Chem.
- 25, 270, 1960.
- 3. Anet R. J. Org. Chem., **26**, 246, 1961. 4. Braude E. A., Linstead R. P. J. Chem. Soc., 3578, 1954. 5. Беллами Л. Инфракрасные спектры сложных молекул. ИЛ, 1963, стр. 190, 194. 6. Ramart-Lucas M., Guerlain J. P. Bull. Soc. Chim., **49**, 1860, 1931; C. A.,

Белорусский государственный университет им. В. И. Ленина

лы — кристаллизуются из этанола.

Поступило в редакцию 3.1 1968