BECHI

НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ

Серыя фізіка-тэхнічных навук УДК 620.183.48

О. Н. ШАХРАЙ, В. Г. ШЕПЕЛЕВИЧ

ТЕКСТУРА БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СВИНЦА И ЕГО СПЛАВОВ

Белорусский государственный университет

(Поступила в редакцию 20.07.2003)

Введение. На основе свинца разработаны различные сплавы, используемые для изготовления припоев, подшипников и др. Физико-механические свойства данных сплавов, технологические и технические характеристики существенно зависят от их структуры, а следовательно, от условий получения. В последние десятилетия активно ведутся исследования структуры и свойств материалов, получаемых сверхбыстрой закалкой из расплава. Данный метод позволяет создать структуру, которую невозможно получить при использовании традиционных методов синтеза и термической обработки металлов. В связи с этим в настоящей работе представлены результаты исследования формирования текстуры фольг свинца и его сплавов, получаемых сверхбыстрой закалкой из жидкой фазы.

Методика эксперимента. Свинец и легирующие компоненты Cd, In, Sn, Sb и Bi, используемые для изготовления сплавов, имели чистоту не хуже 99,99%. Бинарные сплавы систем Pb—Cd, Pb—In, Pb—Sn, Pb—Sb и Pb—Bi изготовлены сплавлением компонентов в кварцевых ампулах. Фольги исследуемых сплавов получены инжектированием капли расплава (примерно 0,2-0,3 г) на внутреннюю или внешнюю полированную поверхность вращающегося медного цилиндра диаметром 20 см. Частога вращения цилиндра равна 1500 об/мин. Линейная скорость цилиндрической поверхности примерно 15 м/с. Для исследования текстуры использовались фольги толщиной 30-60 мкм. Скорость охлаждения расплава, как показал расчет [1], была не менее 106 К/с. Для исследования текстуры применялся рентгеноструктурный анализ. Съемка рентгенограмм быстрозатвердевших фольг проводилась на дифрактометре ДРОН-3М в медном излучении. Изучение текстуры выполнялось с помощью обратных полюсных фигур. Полюсные плотности дифракционных линий 111, 200, 220, 311, 331 и 420 рассчитывались по методу Харриса [2]. Текстура фольги, полученной при инжектировании капли расплава на внутреннюю полированную поверхность, исследовалась как со стороны, контактирующей с кристаллизатором (тип А), так и с противоположной стороны (тип Б). Фольги, полученные спиннингованием (капля расплава инжектировалась на внешнюю сторону вращающегося медного цилиндра), исследовалась со стороны, прилегающей к кристаллизатору (тип С).

Результаты и их обсуждение. Быстрозатвердевшие фольги имели микрокристаллическую структуру. Средний размер зерна в фольгах свинца не превышал 10 мкм. Легирование свинца приводит к дополнительному измельчению зеренной структуры.

В табл. 1 представлены значения полюсных плотностей дифракционных линий свинца и его сплавов. В фольгах типа А наибольшим значением полюсной плотности характеризуется дифракционная линия 111, т. е. наблюдается текстура (111). На долю данной ориентировки приходится от 66 до 97% объема фольги. При этом легирование свинца индием, оловом, сурьмой и висмутом усиливает текстуру (111). Следует отметить, что такая же текстура наблюдалась и в быстрозатвердевших фольгах алюминия, и в его сплавах [3]. В фольгах типа Б исследуемых сплавов также наблюдается текстура (111), но более слабая, чем в фольгах типа А. Кроме того, в фольгах типа Б значения полюсных плотностей дифракционной линии 100 увеличиваются, а для сплава Рb—2 ат.% Ві даже превосходит 1,0. В фольгах типа С полюсные плотности дифракционных линий 100 и 111 значительно превышают значения полюсных плотностей остальных дифракционных линий. Таким образом, при спиннинговании свинца и его сплавов формируется двойная текстура (100)+(111).

Известно [2], что в массивных слитках свинца и его сплавах, получаемых традиционными технологиями, формируется текстура (100). Из плоскостей (100) и (111) наиболее плотноупа-

Таблица 1. Полюсные плотности дифракционных линий быстрозатвердевших фольг свинца и его сплавов

Таолица		т протисти д	- Transmitt							
Концентрация	Тип	Дифракционные линии								
легирующего элемента (ат.%)	фольги	111	200	220	311	331	420			
_	Α	4,4	0,9	0,1	0,3	0,1	0,2			
-	Б	3,4	1,6	0,4	0,3	0,1	0,1			
-	С	1,9	2,5	0,2	0,6	0,4	0,4			
1 Cd	A	5,3	0,3	0,1	0,3	0,0	0,0			
-	Б	4,8	0,4	0,2	0,5	0,0	0,1			
5 Cd	A	4,0	0,5	0,4	0,5	0,2	0,4			
- [С	2,8	1,1	0,5	0,8	0,4	0,4			
10 Cd	A	4,0	0,5	0,4	0,5	0,4 0,2	0,4			
-	Б	1,7	1,0	1,0	0,8	0,8	0,7			
_	C	2,8	1,2	0,5	0,8	0,8 0,3 0,2 0,8	0,4			
20 Cd	A	4,4	0,4	0,4	0,4	0,2	0,2			
-	Б	1,8	0,7	1,1	0,9	0,8	0,7			
5 In	A	5,8	0,1	0,0	0,1	0,0	0,0			
-	С	2,7	1,1	0,5	1,1	0,3	0,3			
10 In	A	5,7	0,2	0,0	0,1	0,0	0,0			
_	Б С	5,8 2,7 5,7 5,2 2,5 5,8 3,5	0,3	0,2	0,2	0,1	0,0			
_	С	2,5	1,0	0,6	1,0	0,3	0,6			
20 In	A	5,8 \	0,1	0,0	0,1	0,0	0,0			
-	С	3,5	1,1	0,4	0,5	0,2	0,3			
1 Sn	A	5,4	0,3	0,1	0,2	0,0	0,0			
-	Б	5,0	0,5	0,2	0,3	0,0	0,0			
2 Sn	A	5,7	0,2	0,0	0,1	0,0	0,0			
_	Б	5,4	0,0	0,2	0,4	0,0	0,0			
5 Sn	Α	5,2	0,4	0,1	0,3	0,0	0,0			
-	С	2,0	1,8	0,5	1,2	0,2	0,3			
10 Sn	A	5,0	0,6	0,1	0,3	0,0 0,2	0,0			
-	С	1,5 5,6	2,9	0,4	0,7	0,2	0,3 0,0 0,3 0,0			
20 Sn	A	5,6	0,3	0,0	0,1	0,0	0,0			
- 1	C	1,7	2,5	0,7	0,5	0,3	0,3			
2 Sb	А Б	5,4	0,3	0,0	0,2	0,0	0,0			
-	Б	4,5	0,8	0,2	0,3	0,1	0,1			
-	Ċ	4,5 2,3 5,6	2,4	0,3	0,6	0,2	0,2			
5 Sb	A	5,6	0,2	0,0	0,2	0,0	0,0			
	C	2,4 5,4 1,5	1,3	0,5	1,1	0,3	0,4			
10 Sb	A	5,4	0,3	0,0	0,3	0,0	0,0			
_	C	1,5	1,3	0,2	1,4	0,4	0,2			
15 Sb	A	4,9 1,9	0,7	0,1	0,3	0,0	0,0 0,3			
	C	1,9	2,2	0,5	0,9	0,2	0,3			
20 Sb	A	5,0	0,8	0,1	0,1	0,0	0,0			
2 Bi	A	5,0	0,5	0,1	0,3	0,0	0,1			
- 1	Б	2,1	1,8	0,7	0,6	0,5	0,3			
	C	1,6	3,9	0,2	0,3	0,1	0,0			
5 Bi	A	5,6	0,3	0,0	0,1	0,0	0,0			
-	C	1,9	3,0	0,1	0,7	0,1	0,2			
10 B i	A	5,4	0,2	0,2	0,2	0,0	0,0			
-	С	1,4	4,2	0,0	0,4	0,0	0,0			
20 Bi	A	5,3	0,3	0,1	0,3	0,0	0,0			
	С	1,7	2.5	0,5	0,8	0,3	0,2			

кованными являются плоскости {111}, а наименьшей поверхностной энергией характеризуются плоскости {100} [4]. Поэтому при условиях кристаллизации, близких к равновесным, энергетически выгодным является формирование текстуры (100). При затвердевании в сильно неравновесных условиях текстура определяется теми зернами, у которых при плоском фронте кристаллизации межфазная граница кристалл—жидкость совпадает с плоскостью, перемещающейся с наибольшей скоростью. В работе [5] определены энергетические барьеры перемещения межфазной границы кристалл—жидкость для различных плоскостей. Согласно выполненным расчетам, энергетический барьер для перемещения межфазной границы, совпадающей с плоскостями {111}, меньше, чем для межфазной границы, совпадающей с плоскостями {100}. Вследствие этого при быстром затвердевании предпочтительнее растут те зерна, у которых плоскости {111} перпендикулярны направлению теплового потока. Они формируют тем самым текстуру (111) в быстрозатвердевших фольгах.

В фольгах типа Б текстура (111) менее четкая, чем в фольгах типа А. Это обусловлено тем, что в процессе кристаллизации слоев фольги, прилегающих к кристаллизатору, проис-

ходит выделение теплоты, которая уменьшает скорость охлаждения последующих слоев фольги. Изменение условий кристаллизации для последующих слоев фольги способствует росту зерен с другой ориентировкой, а именно (100), что вызывает уменьшение доли зерен с ориентировкой (111).

Скорости охлаждения расплавов, инжектируемых на внутреннюю и внешнюю поверхности цилиндра, различаются. В первом случае материал прижимается к поверхности кристаллизатора центробежной силой, что обеспечивает более высокое значение коэффициента теплопередачи, а следовательно, и скорости охлаждения по сравнению со вторым случаем, когда капля расплава инжектирована на внешнюю поверхность цилиндра. Более низкие скорости охлаждения расплава при спиннинговании приводят к появлению компонентов текстуры (100), которая для некоторых фольг становится преобладающей. По этой причине в фольгах типа С формируется двойная текстура (100)+(111).

				` '				
Материал	Температура и время отжига, К/мин	Дифракционные лишии						
		111	200	220	311	331	420	
Pb	250/60	4,3	1,1	0,1	0,3	0,1	0,1	
Рь	250/300	3,7	1,5	0,1	0,3	0,2	0,2	
Pb—2 ат.% Cd	240/60	4,8	0,4	0,2	0,5	0,0	0,1	

0,7

0,7

0,1

0,2

0,4

0,3

0,4

0.3

0.1

0,0

0,1

0.0

0.1

0.2

Таблица 2. Полюсные плотности дифракционных линий быстрозатвердевших фольг свинца и его сплавов (тип А)

Текстура (111) в быстрозатвердевших фольгах свинца и его сплавах является термически неустойчивой. Так, отжиг фольг свинца (тип А) при 250 °C в течение 1,5 ч приводит к уменьшению полюсной плотности дифракционной линии 111 и увеличению полюсной плотности дифракционной линии 100, как видно из табл. 2. Отжиг фольг сплавов, содержащих кадмий, олово и висмут, также приводит к аналогичному изменению полюсных плотностей дифракционных линий. Наблюдаемое перераспределение полюсных плотностей дифракционных линий указывает на протекание рекристаллизационных процессов. Для его объяснения необходимо учесть, что величина удельной поверхностной энергии поверхности, совпадающей с плоскостями {111}, больше значения удельной поверхностной энергии поверхности, совпадающей с плоскостями {100} [4]. Поэтому отжиг фольг при высоких температурах, вызывающих миграцию высокоугловых границ, приводит к уменьшению объема зерен с ориентировкой (111) и увеличению объемов зерен с ориентировкой (100). Следовательно, рекристаллизация фольг вызывает ослабление текстуры (111).

Таким образом, в фольгах свинца и его сплавов, полученных кристаллизацией на внутренней поверхности вращающегося медного цилиндра, образуется текстура (111), а в фольгах, полученных спиннингованием, формируется двойная текстура (100)+(111). Рекристаллизация фольг вызывает ослабление текстуры (111).

Литература

1. Мирошниченко И. С. Закалка из жидкого состояния. М., 1982.

Pb-1 ат.% Sn

Pb-2 ат.% Sn

Pb-2 ат. % Ві

250/60

250/60

250/60

4,8

4,6

- 2. Вассерман Г., Гревен И. Текстуры металлических материалов. М., 1969.
- 3. Шепелевич В. Г., Ташлыкова Бушкевич И. И., Анисович А. Г. // Физ. и хим. обработки материалов. 1999. № 4. С. 86-89.
 - 4. Broughton J. Q., Abraham F. F. // Chem. Phys. Lett. 1980. Vol. 71. P. 456-461.
 - 5. Li D. Y., Szpunar J. A. // J. of Mater. Sci. Lett. 1994. Vol.13. P. 1521-1523.

O. N. SHAKHRAY, V. G. SHEPELEVICH

THE TEXTURE OF RAPIDLY SOLIDIFIED FOILS OF LEAD AND ITS ALLOYS

Summary

The formations of texture in rapidly solidified Pb foils have been investigated. Depending on the production conditions foils can have texture (111) or double texture (100)+(111). Recrystallization causes weakening of texture (111).