
Journal of Engineering Physics and Thermophxsics, Vol. 76, No. 5. 2003

S O L U T IO N  OF THE UNSTEADY HEAT-CONDUCTION 

EQUATION FOR A SYSTEM OF TWO BOUNDED 

HETEROGENEOUS CYLINDERS WITH THE USE 
OF THE INTEGRAL TRANSFORMATIONS OF 
H A N K E L  AND LAPLACE

A. V. Alifanov and V. M . Golub UDC 53o 24

Consideration has been given to the problem of uniform unsteady lateral healing of two bounded cylinders 

having dissimilar thermophvsu al characteristics and being in ideal thermal contact. The exact tinalvlical so­

lution Jor determination oj a three-dimensional temperature Jield in real space has been found with the use of 

the integral-trunsformation method. The distinctive features of the solution obtained have been investigated 

and examples of specific calculations have been given.

Let us consider a sysiem of ideal contact of two bounded cylinders with dissimilar themiophysical charac­

teristics and a zero initial temperature in the plane ; = 0. The cylinders have the same radius R and lengths f  and 

/_ ic.-,pccinciy. Л heat .source ol constant surface strength Q r  begins to act throughout the lateral surface of the cylin­

ders <—/] < ;  < /3, r = R ) at the initial instant of time. On the cylinders' ends, we have heat exchange with a zero-tem- 

perature ambient medium according to the Newton law with heat-transfer coefficients ot| and a i.  It is necessary to 

find the distribution of the temperature field in the system at any instant of time. Mathematically the problem formu­

lated has the form of two differential heat-conduction equations in cylindrical coordinates

dT\

dt

V r ,  Э2г, 1 dT{ 

r drdz' dr~

dT,
= 0 . — /, < - < 0 : —  

dt

ЭТ-, Э Т ,
— r1 +--

dT2

f + ~ 
dr" r dr

0 . ()< ;< /- ,

wiih ttic following initial and boundary conditions:

T, (г. c, 0) = T-, (г. с. 0 ) , X
dTi (r. — /, ./)

dz

dl\ (r. - I )

aT
■ = -  а ( г .  t )  ;

11)

C)

dT, (/?, z. I) dT-, (R , /) dT, (0, t) ЭГ, (0. ;. t)

X ' Tr =X 2~ ^ r  dr = = °-

In the region of contact (z = 0), let it be necessary to satisfy the conjugation conditions

dT, (r, 0, t) dT-, (r, 0, r)
Г, (r. 0 .0  = 7’,  (r. 0 . 0 .  = ---- .

dz ~ oz

To problem (1 >—( 4 we successively apply the finite integral Hankel transformation

(3)

(4)

Т/ (Г, Z, t) dr
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Т, (Цт . j)  = J  exp (- st) Tj (цт . г, 0  d t ,

о

where цт are the roots of the equation У[(ц) = 0. After the indicated operations, the initial problem is reduced to the

following problem:

П ±  2 =. _ R J0 (Mm* Qr) a 2 f  -  RJq ®r) л < - < / •
2 ~ Im l  ~ “  у ' — /| < - < 0 . 2 ~ °2т '2 ~ ~ г\ . 0 < ^ < / 2 . (5)

dz \ dz -

аки the Laplace transformation

tIT| (цн|. - /|. s) = dT2 (ц1П, /;, .v)
Х.| — — сх17*j (Ц1ГГ — /|. j)  . — — — a iA  (ц,„. Л. л); (6)

Л". (Цт. 0, .0 dT,  (ц 0. s)
Г,(ц1П,0 '.') = Т2(цт,0 '5 ). X, — ^ =  ~  J ; ---- . (7)

where

Finally, problem (l)-(4) with partial differential equations has led us to the system of ordinary differential 

equations (5) with boundary conditions (6) and conjugation conditions (7). The general solutions of Eqs. (5) arc writ­

ten as follows:

s О|/?У0 (Mm) Qr
T\ (Mm. «  s) = Am cosh 0]„z + Bm sinho)mc + 2 *

A.|i (5 +a, Ym)

_ a-,RJ0 (Pjfj) Qr
7*2 (|im. c, s) = Cm cosh + Dm s in h c ^  + — ------- — .

XtS (j + a, ym)

After determination of the integration constants Am, Bm, Cm, and Dm with the use of the boundary conditions and the 

conjugation conditions, we obtain the expressions for the temperatures of the contacting cylinders in the transform 

space:

r , (Hm, z. s) = |J ^ ~  \ i  (^ 2m s'nh< W 2 + h2 cosh ° 2rnl2 ~ Л2> «*|т cosh a ,m (/, + г) +

+ Л, sinh a lm (/, + ;)) - — ^ [ ^ 2  —  (O ^  sinh + Л-» cosh (<r,wcosh a )m (/, +.-> + *, (sinh<r,„, (/, +r>-

T2(\xm, z,s) =

a \m

1 a l-  sinha,m ;)) + a, ( a ^  cosh o2m/2 + h2s,nh <W2>coshCTim 4  + --------------
i  s (s  + a lym)

RQffln (Цщ)

(8)

va.a
L^-  ̂ 2 (c lm sinh 0|OT/| + A, cosh a lw/, - Л,) ( o ^  cosh a ^  (/2 - :) +
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л/а.ат
1 о^ ,, (/, - с)) -

sa2/>An

Mm
^ ■1---(0 ,m sinh ст,ш/, + A, cosh a 1(n/,) (o in  cosh (sinh a-,,,, (/-, - :)

° 2m

- s in h a ^  c)) + a ,  (o lm cosh o 1;n/, + A, sinh a im/,) cosha in  ; + —

J v (v

a->•

+ w:Ym)

( l >)

7-rn (и,„-■*> = ^ a \a 2 (*-la lm (°im  sinh <̂ 1,^ 1 + A, cosh о ( a ^  cosh o >( /, + A, sinh с ^ / ; ) +

a ,  a-,
+ Ц 1л (a I(„ cosh a ,m/, + A, sinh a lm/,) ( o ^  sinh /2 + A, cosh o ir,/2) ) . A, =  — . A, =

pte -*Ш» explicit expressions for the temperature fields we must perform the operations o f inverse Laplace and 

transformations on Eqs. (8) and (9) [1-31. In this connection, the question as to whether the original functions 

f * «  mnperature of the solutions obtained exist is topical. It is common knowledge that not any function j\s) in the 

•f Laplace transforms can be a transform of a certain function fit) in real space [2]. As the analysis of the so- 

d  (8) and (9) shows, they satisfy all the requirements of existence of original functions and corresponding in- 

вэпМ'огтт. The only singularity exists solely at the boundary of contact (; = 0). But this singularity leads to the 

• wee of a certain generalized function in the final solution and it is no barrier to the procedure of inverse trans-

i.» k a , This singularity will be discussed somewhat below. In the process of inversion of the solutions of (8) and 

* t  have employed the standard integrals of Laplace transformations [4] and the Vashchenko-Zakharenko theorem 

vaftton  and (he Borel theorem of multiplication o f transforms [2]. In view of the cumbersomeness of these equa- 

» accordingly the procedures of inverse transformation, we give only the final result, omitting the procedure of 

«bAcmaiical computations themselves. The spatial temperature field in the system of bounded heterogeneous cyl- 

§!№*■• arc in ideal thermal contact and heated from the lateral surface by a heat flux of constant power QK is de­

ed by the following expressions:

T, (r, z. I) =
X,R

Лм  cos ykif  + sin yk<£  2
2 - --------------m ---------------- exP ( - < W »  + 2- 2

’o fH

а 1 УкЮркО ХЛ>0*„>

Pirn
Z  ~ --- 2--- « Akm cos Укпг + Bkm sin T*w=) F «  + (Akm cos sin y ^ z ) G (/)) +
t=, (Ук,П + Ут)7-кт

. 2 ... . -exp (-a2y„f))-X,(\ - е х р (- а (у‘ / ))  , , 
+ (I - exp (- alymt)) +------------------------------------ Л (:) (10)

T2 (r, z, t) =
- '• f H

4=1 a\ УкоРю | W o ft**)

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



Z  7 Уы>---- ((ckm cos Я km' + Dkm sin F W  + (Ckm cos 4h*t + Dbn sin Якпг) G ( '»  +

(Уы + Ут)гЬП

+ ( I - exp (- «-,Y,'„/)) +
2 X, (I - exp (- a ty j)) - X, ( I - exp (- a2y j))

У a-, -

П (=) (11

Here

h (I) =
Уkm *» Ym ( 2 a '> 2 2 1

- —  exp (- a2 у;ni)-- —  | exp (- a2 у,„i) - —  exp (- я , (уы  + ym) D \

Pb, $km{ )

G (t) = I - exp (- a{ ymi) - —  (exp (- a, y„j) - exp (- a , (yl,„ + y'm) /)) 

У km

Zkm ~ h\ ^ 1 ( ,+ Л 2/2) + “  j- T tm P b i/ lj-1 •: Л-)
a l "ikm&bJl

a-»

xcosy;,„/| COS </ы /2 +

x (уы f - + A,/,) + 7 ^  (1 + Л,/,))]соя YaV i sin </ы/2 +
I Yb, ))

- X\ ( Ры  (2 + Л|/|) + ^  (! + V 2)]]cos W 2 sin W l  +
I P*m j j

(h,hl"2
.(*

P*m

*2(2 + Vi\

a.
A, (2 + A2/2)) ®in Yfan/| sin 4kmh'

Ak0 = 2 j(e, A, - a2 X,) o/aj"yW cos y ^/, + V ^ A ,  s ihy ^ /,) (A2 cos</*0 /2- Чк0 sin ^ 2) + 

+ a ,a ,  (V^"Y*o c o s ^ / 2 + A2 sin qkfJ 2) + h2a2Xl (Va7Y*ocosy^/, + V ^ A ,  sin yA<)/,)[, 

^ 0  = 2 {(e, - a2 A.,) (Ai cos Yto^i - Y*o sin y*^,) (A2 cos <7W l2 - Чкп sin qLi)l2) -

- a,fl, V^7(A2 cos qMl2 - qm sin q ^ )  + ^ 7 (Al 008 YWl ~ Yw s,n W l)|  ■

= 2Xi (7*« cos W i  + Л 1 sin УыМ (Якт sin W :  - h2 cos W : + л2> •

В km = 2X, (A I cos Yfe^i -  Уы sin у**,/,) (<?ы  sin <?ы /2 -  A2 cos <7ы /2 + A2) ,

^2<y*mcosy^/i + A, sin уы /,) (*2 cos<7*̂ 2 - </ы  sin •
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f ~  « ,  ykl

Pfon ( 4 h n  C° S ‘ik” ‘l2  +  ^  Sm  Ч Ы 1 ' ]

r
Bkrn = 2*2 (л2 cos <?*,„/-, - qkm sin qkml2) (h, cos yfan/| - Yto, sin ykml l + h,).

Qo = - |^ 2  * i — ai (Л1 cos 7W)/ 1 — 'Yjto s*n Хм/i) 0 ^ 7 Тдо cos /j + Vo, h2 s*n 4k\J^ + 

+ (V^7 уи, cos Y*<y, + Va7 Л1 sin W |) + /l!ai^2 0 ^ 7  Y*o cos W 2 + ̂ *7*2 sin Ws>| -

C* '"= 2 (Л| cos Y*'"/| ~ Укт sin (</*m cos 4b”^  + Л2 sin W : > +

V flU

a ,  рЬи

a, (Ytoncos W i  + sin YfonV

Ckm = 2 V ? "  *2 COS W i  + Л2 sin W ’ > <Y*« Sin Y*m/, “ Л, COS Yto„/, + Л,) .
I

D*"=V f "  »«.• “ f c - V f " **.• » ы - \ ^ . + ( ' - ^ к  • « to .= V s "Pt«

nw - j®
when с *  0 .  

when с = 0 .

The quantities yklll are the roots o f the transcendental equation

*1 Укт ( ^ 7 P*m c o s  W 2 +  ^ T /,2 s in  W 2 >  ( ; , l COS Y*,„/| "  Y*m s in  Y *»/l> +

+ *2 ^ " p * m  (Y*m cos Yfoi/l + h\ sin У/ J l)  (Л2 cos W 2 “  ?*m sin ? ь У  = 0 • ( 12>

The analysis of Eqs. (10) and ( I I )  obtained shows that they have a much more complex structure than the 

solutions for homogeneous cylinders [1, 5], one-dimensional problems o f contact heat conduction [I, 5. 6), and three- 

dimensional problems in scnubounded and unbounded regions 15-8]. In addition to the complex general form of the 

final expressions, we must focus our attention on two o f their features.

The first feature is that in Eqs. (10) and (11) the indices o f the exponents and the denominators of the terms 

of the sums of series involve the combination of the quantities y^n + Km- In the cases o f homogeneous materials these 

terms are the roots of independent transcendental equations for the axial and radial directions. When the problems with 

bounded contacting bodies having dissimilar thermophysical characteristics are considered, the roots of longitudinal 

transcendental equations, conversely, depend on the quantities Y «. which is obvious from expression (12). That is the 

reason why they have the double subscript km in our solution. We can call the occurring phenomenon the hybridiza­

tion of the axial and radial roots. Let us assume that it is necessary to introduce m radial terms of the sum into con­

sideration and к axial terms so as to attain the optimum exactness of the solution. Then in the case of a homogeneous 

material we will have to solve m + к transcendental equations. I f  the problem is considered for two heterogeneous con­

tacting bodies, this number increases to m {k+ 1). The analysis of Eq. (12) shows that it is precisely the dissimilar 

thermophysical characteristics of the contacting objects that are responsible for such a dependence. Indeed, if we set 

Xi = Xi = X, fli *  o2 e e» Aj = A2 = A, /j *  0, and /2  e  U we obtain the well-known ([1, 2, 5]) transcendental equa­

tion for a bounded homogeneous body with the same coefficients o f heat transfer on the surfaces г = 0 and :  = /:
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TABLE 1. Roots of Eq. (12) for the Systems Copper-Titanium and Steel-Zirconium

1 m Mm
Y m Уbn Y3m УАm Ът

CuTi FeZr CuTi FeZr CuTi FeZr CuTi FeZr CuTi FeZr

0 0 2.68 6.33 13.91 33.14 33.75 71.60 54.50 96.31 72.73 138.91

1 3.83 38.55 52.01 70.96 86.04 86.87 127.96 111.12 159.42 136.25 194.94

■> 7.02 26.17 5.28 68.59 61.10 92.38 101.05 124.59 147.50 150.98 177.30

3 10.17 55.15 19.18 90.11 68.26 127.12 115.94 154.89 158.41 175.86 199.30

4 13.32 36.84 27.57 82.59 76.42 121.73 128.27 154.78 169.16 179.95 217.34

5 16.47 21.48 33.06 66.98 85.69 110.79 137.94 151.04 181.53 178.78 229.26

Fig. I. Change in the temperature in the contact plane on the surface of the 

cylinders in the process of heating: I) copper-titanium system: 2) steel-zirco- 

nium system: 3 and 4) sieady-state temperatures calculated for these systems 

from the results of [9].

h (y cos yl + h sin yl) + y(h cos yl - у sin yl) = 0 .

The second feature of the solution obtained is in the presence of a point unit function тЦс) in it. Mathemati­

cally the appearance of this function is predetermined by the fact that expressions for the temperatures in the transform

space (8) and (9) have finite limits at the point с = 0 on condition that IX2 + for Г|(цш. s) and

ч-i

ел
for 72(n m, s). This effect is absent when the contact one-dimensional [1, 5] and unbounded [8-8]

problems of heat conduction are considered. It is also noteworthy that in the steady-state case the solution of our prob­

lem has no singularities in the contact plane and it is described by smooth functions [9].

In closing, we give results of calculations of the temperature fields in the process of diffusion welding of two 

different systems consisting of cylinders with dissimilar thermophysical characteristics (copper-titanium and steel-zirco- 

nium). To make the comparison more lucid -we have selected the identical dimensions o f the cylinders and parameters 

of heating (radii and lengths of the cylinders 40 mm. heat-transfer coefficients on all the ends 100 W/(m2 deg). and 

heating power I kW/m"). Thus, the dynamics of the spatial distribution of temperature will depend only on the char­

acteristics of heated materials. Table 1 gives the first five roots o f the equation У|(Ц) = 0, which are related to the 

quantities ym by the relation = ymR, and the corresponding roots o f the transcendental equation (12)

As is seen from the table, the quantities strongly depend on both the roots o f die radial equation /](ц) = ' 

0 (they change with \i„ within one system) and the form o f the contacting materials (they are dissimilar for the same 

\i„, in different systems).

Figure 1 plots the temperature in the contact plane on the cylinders' surface as a function of time for the two 

systems. The same figure gives the values of the temperature in the steady state under the analogous conditions of
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Fig. 2. Axial temperature distribution in the systems copper-titanium (a) and 

steel-zirconium (b): 1) along the generatrix of the cylinders; 2) along the cen­

tral axis; 3) boundary of the contact plane.

r 0 г о

Fig. 3. Spatial distribution o f the temperature field in the central plane of the 

cylinders: a) copper-titanium: b) steel-zirconium.

heating and heat transfer, calculated from the results of (9). As follows from the plots, the calculation results (level of 

reaching the steady-state regime) are consistent with a satisfactory degree of accuracy.

The nearly coincident curves of change in the temperature in Fig. I can lead us to the conclusion that, under 

the same conditions of heat exchange, the distribution o f the temperature field in dissimilar systems depens weakly on 

their thermophysical characteristics. But this is not quite the case. Figure 2 gives the longitudinal temperature distribu­

tion on the surface of the contacting cylinders and along their central axis in the nearly steady state. On the surface, 

the maximum is shifted from the interface (symmetry plane of the systems) toward the material with a lower coeffi­

cient o f thermal diffiisivity a (titanium or zirconium). On the central axis immediately behind the contact plane, the 

temperature rapidly decreases in the same direction. These effects are characteristic of the two systems but they are 

much more pronounced in the case of copper and titanium. We can also note an insignificant change in the tempera­

ture from the surface toward the center for the copper cylinder. The difference in thp character of the temperature 

fields is more pronounced in Fig. 3, where their spatial distribution in the central cylinder planes is given. We observe 

a decrease in the temperature toward the central axis and the end surfaces which corresponds to boundary conditions 

(3) (lateral healing) and (2) (heat transfer through the ends). But the difference in the behavior of the temperature 

function for different materials is quite significant. This is particularly true o f copper, whose heating is constant 

throughout the volume, in practice. The reason is the thermal properties o f the materials under study, which vary in a 

rather wide range. For example, the thermal-diffusivity coefficients in the system steel-zirconium are rather close 

(a i/0 2  ~ 1.8), and they differ more than ten times for copper and titanium (0 1 / 0 2  ~ 12.6). This is precisely the reason 

why the forms of the temperature field in Fig. 3 are dissimilar.

O f great practical interest is such a parameter as the time o f reaching the steady-state regime by the process. 

It follows from Fig. 1 that this period is very significant (about 1 h). At the same time, as experience shows, the
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Fig. 4. Rale of change of the temperature in the contact plane vs. heat-trans- 

fer coefficient for the copper-titanium system: 1) a  = 100, 2) 50, and 3) 5 

W/(m2oC); 4) steady-state temperature calculated from the results of [9].

steady state is reached much more rapidly. This is attributable to the fact that, in vacuum heating, the basic mecha­

nism of heat removal is radiation, and the heat-transfer coefficient a  takes on low values at the beginning o f the proc­

ess since the temperature of the heated bodies differs little from' the temperature of the ambient medium. The 

temperature of the system will increase much more rapidly. Figure .4 give* it» change for different values o f a . It is 

seen that for a small coefficient of heat transfer (characteristic of the beginning of the process) the operating regime 

is reached in a few minutes. This result is in good agreement with practical data.

Thus, the obtained analytical solution of the problem formulated enables one to adequately describe the spatial 

distribution of the temperature field and its dynamics in the system of bounded heterogeneous bodies for a constant 

coefficient of heat transfer and to quite accurately evaluate the process o f heating with allowance for the change in the 

boundary conditions.

NOTATION

R. radius of the cylinders, m; /) and /2, lengths o f the cylinders, m; Qr, surface power of the heat flux. 

W /m2; ct) and a2. heat-transfer coefficients, W/(m2oC); a\ and a2, thermal-diffiisivity coefficients, m2/sec; X) and Xq. 

thermal-conductivity coefficients, W/(m2 oC); h\ and /12, reduced coefficients o f heat transfer, m-1; T\ and Г2, tempera­

tures of the cylinders, °C; T\ and T2 . temperatures of the cylinders in the transform domain. °C m 2 sec; Jq and J\, 

Bessel functions of the first kind of zero and first orders; Ykm roots of the transcendental equation (12); s, parameter 

of the Laplace transformation; t, time, sec; z and r, integration constants. Subscripts 1 and 2 refer to the first and sec­

ond cylinders respectively.
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