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Abstract

We discuss the problem of steady field and current flow distribution in model 
double-strip composite conductor having the electric contact in its interface. 
Composite components are aluminum and anti-alumium - hypothetic conductor 
having opposite on sign Hall coefficient whereas all other components of its 
resistivity tensor are the same as aluminum resistivity tensor. The interface is 
orthogonal to an external magnetic field. Some new approaches for this problem 
are developed. The analysis is based on the phenomenological macroscopic 
equations for steady current field including the renewal of the hypothesis of 
existence the transverse current in every strip. The transverse current density 
value is accepted to depend on the distance to the interface plane. The transverse 
and transport current densities are obtained and the expression for the effective 
transport resistivity of composite conductor is estimated via the averaging of 
current density through the conductor volume. It is seen that the effective 
resistivity is a characteristics of an intermediate case between two limit 
geometries of charge flow. One limit geometry is a current flow through a single 
conductor (the interface does not influence on to current density allocation and 
resistivity). Another limit case is similar to current flow via disk like Corbino 
conductor (the interface influences on to charge flow very highly, the effective 
resistivity is large). It is shown that for relevant geometric parameters of double 
strip conductor the intermediate case for current density distribution and 
effective resistivity is closer to Corbino geometry than to single conductor 
geometry.

1. Introduction

Enhancement of magneto-resistance the composite conductors being a stabilizers of super
conducting cables takes place during operation. The application of aluminum and of 
copper together in joint composite conductor is more profit than separately. Aluminum has 
very small magneto-resistance in comparison with other conductors of normal metals. Its 
Fermi surface is closed that and dispersion law is very similar to that of free electron gas. 
Some peculiarities are also present and as a result the resistance shows weak non 
saturation in magnetic field. Especially this takes place for polycrystalline pure metal 
sample. However the mechanical properties of aluminum are not satisfied because its
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hardness is very small even at cryogenic temperatures. The copper is more mechanically 
strong metal and it is more suitable from this point of view but the electrical properties of 
copper are not very good. The Fermi surface of copper is of open type and as a result the 
resistance in magnetic field for polycrystalline conductor has strong linear dependence on 
magnetic field. This behavior have been observed firstly by Kapitza and named after his 
name. On this reason the combination of these components is used for manufacture 
different pool cooled superconductors for helical devices and magnets where the super
conducting filaments for example NbTi are composed with aluminum stabilizers and a 
copper casing. An effective resistance of composite conductor at zero magnetic field is 
consistent with predictions for simple parallel circuit model where high pure core is 
shunted with high resistance jacket. However the results of measurement of resistance 
under magnetic field presence are different from the predictions of parallel circuit model. 
The magneto-resistance exceeds that expected, and it has large linear increase with 
magnetic field more similar for copper behavior instead of anticipated almost saturation 
behavior of aluminum. It was proposed that this anomalous behavior was a result of the 
existence of additional dissipation current that increases energy losses and generates a 
higher effective resistance for composite under the same value of current of source. This 
additional transverse current of Hall nature and its influence on transport properties of 
composite conductor have been analyzing in the whole file of papers, see [1-10].
The purpose of the present report is to develop some novel approaches for study the Hall 
current and improve the modeling of initial reason that generates an excessive magneto- 
resistance of composite conductor. Corbino geometry for charge movement and respective 
strong increase of resistivity due to annihilation of electric Hall field in aluminum disk 
sample is applied for analysis of the composite resistance problem [11]. Actually both 
current arrangement pictures are rather similar because in any that there is a possibility for 
appearance of closed electric lines and particle movement along these lines. Here we 
analyze the most simple variant of composite conductor consisting of the same in 
geometry strips whereas the material of strip is similar on its resistance in magnetic field.

2. Approach

Some novel approaches for this problem are developed. As the polarity of the Hall effect 
in aluminum is opposite to that in copper and this circumstance is the main reason of 
transverse current generation the prime model of composite is chosen as a double-strip 
that. Moreover the composite is chosen as consisted of components that have an ideal 
electric contact via the interface being orthogonal to an external magnetic field. The 
external magnetic field is rather strong (Larmor radius is much less of charged particle free 
length) as a result the own magnetic field of current may be neglected in composite 
volume. For the simplicity of analysis and to verify the approach and results of analysis 
the model type of conductor is used as a conductor consisted of components having very 
similar type of conductivity and resistivity tensor. In other words one of component is 
aluminum conductor with hole type of conductivity ( Al+), its Hall coefficient is positive, 
but another component is a hypothetical quasi-aluminum conductor having electron type 
of conductivity ( АГ ) its Hall coefficient is the same on magnitude and negative on sign. 
As a result the conductivity and resistivity tensors of these components are the same in 
modulo excluding of diagonal linear on magnetic field components being opposite on sign.
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The model composite of aluminum ( Al+ ) -anti-aluminum ( АГ ) combination is more 
easy for analysis as the definite symmetry of conductivity properties simplify the 
contribution in to magneto-stimulated transverse Hall-like current generation of both 
composite components. The application of the tensor relations between current density and 
electric field in this case allows to regard only one half of composite conductor. The basic 
suggestion is that there is closed current lines in composite. These lines are a result of 
Loretce force action on to moving charged particle. Respective tensor relations have to be 
used under suitable boundary conditions.

Fig.l Composite double strip conductor and its arrangement in an external magnetic field.

Double strip composite conductor model is displayed in Fig.l. The conductor is uniform 
along transport X-direction and a primary electric field is applied along this direction. The 
magnetic field is oriented along Z-axis. The strips of conductor have the same dimensions. 
In steady current state the equations that govern the transport process and transverse Hall 
current mechanism generation in massive conductor (the cross dimensions are much 
higher of charge free length ) are the averaged macroscopic phenomenological field 
relations of potentiality for steady electric field, current density continuity conditions 
closed with material conditions:

V x E = 0 ;  j  = oE; E = pj (1)

here E is an electric field vector, j  is a current density vector, cr is a conductivity tensor 
being equal to the reciprocal of resistivity tensor p. In this consideration:

P  yx P  xy Pyx P  xy ^

here pik is a component of resistivity tensor p, R is Hall coefficient, В -  an external 
magnetic field.
We denote aluminum component as A1+ and anti-aluminum component as AT.

РЕ
ПО
ЗИ
ТО
РИ
Й БГ

ПУ



4

p (A t )= p +; p (A l )=p~ ;

P X X  P xy Pxz

Pik *yx P yy P yz 

Pzx Pzv P i
(2)

\ f '  zx t'  zy t' zz'

2Here the largest terms of tensor components proportional to (RB/p^J are taken into 
account. It should be stressed that only two off-diagonal terms of resistivity tensor namely 
pxy and pyX are of great value under the magnetic field action, whereas all other 
components of p  and p  ' are of the same order of magnitude of the resistivity at zero 
magnetic field. The components of conductivity tensor have more complicated 
dependence on magnetic field: transverse diagonal components are positive and are 
proportional to magnetic field to the power minus 2, whereas all off-diagonal components 
are proportional to inverse magnetic field.
The basic suggestion of this task in all papers have been numerated here before is that a 
primary transport electric field component Ex is a uniform that through the volume of 
double strip conductor. The total problem to be defined is the effective resistivity of 
composite conductor pef  being the coefficient of proportionality between transport electric 
field component Ex and averaged through a cross section a transport current density </*>.

Ex
Pef/ = ----Г -  (3)

<Jx>

3. Calculation and results

On the base of tensor relations between current density and electric field components it is 
clear that the conditions for an existence of transverse current of Hall nature take place for 
the geometry of conductor. Really the usual electric Hall field is much higher of transport 
directional field for singular conductor. In the case of composite this high Hall field is 
shorten by conducting medium of another component. Respectively the electric Hall field 
of another component is shorten by the conducting medium of the first component so that 
Hall fields of components enhance each other in the process of transverse current 
generation. So for the any closed contour in the plane ZX (for instance for the contour a-b- 
c-d, Fig.l) the summarizing of Hall electromotive forces takes place and as a result the 
circular current along this contour generates in accordance with the potentiality of steady 
electric field. For the contour a-b-c-d the next relation can be written:

jdl,(p,Jt)=0  (4)

Using the conception of symmetry of contour "a-b-c-d" it is possible to write the 
potentiality expression of (4) in integral form as:
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P y , \ j &  + Руу \ j ,d y  + Руг\ j , dy +  Р г,\ j , dz + Ргг\ j , dz + ConSt = 0 (5)

Here the integration along Y direction is in the limits from zero to b (b is a width of 
conductor), integration along Z direction is from zero ( z -coordinate of interface is zero ) 
to any point z (z is a variable of task). This equation is rather complicated for farther 
analysis. It is really to accept that the current densities j x ,jy and j z are the functions of the 
distance z from the interface to symmetrical with respect to interface contour lines "b-c", 
"a-d". That is j x(z), jy(z).j2(z). So the equation (5) can be represented as:

P,J,{z)b + Pyyjyify + P y jS t y  + \p,yjy{z)dz + J p j !(z)dz + Const = 0 (6) 

b p ,M J d z  + bpyy8jr /dz  + bpy!dj, /dz + p !yj f + p j z = 0 (7)

Following the condition that die conductor is long in transport direction, following the 
current density continuity principle and using the condition that electric field component 
Ex is the same in the composite volume ( it means that Ex is constant through conductor 
volume ) :

djx /дх+  djy /д у  + djz /d z  = 0
dEJdx, = p^cjjdx + pxydjy/dx. +pxz$ 2/3c = 0

(8)
dEJdz = PxxOfJck + pxydjy/dz +pX2$ /d z  = 0 

dEJdy = PxxCjy/ду + pxytfjdy +pxz$ z/dy = 0

it is possible to transform the equation (7) so to simplify it and to find the characteristic 
equation for current density under conditions have been accepted before:

dz _ b djy _ b djy
_ PyxPxy P Zy j y P 22 Л ^

Vyy
У  X X

accepting that at the interface of a composite (z = 0) the current density jy is connected 
with j x by simple relation j y (z = 0) = - PyJ pyyjx (z = 0)(this relation follows from the 
demand of zero value of Ey in the plane of interface) the current density j y may be 
represented as that having exponential law of dependence on coordinate z

Jy(z ) = - i p , P j P y № * eXl\PtyZb ~'(PyJ>,yP™ -  PyyY \ (10)

The more precisely connection between j y (z = 0) and j x (z = 0) is:

jy (Z ~ ty ~ ~ (Pyxt Pyy ) 0  PyzPzy/PyyPzZ ) jx (z 0);

5
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P zy jy {z )= P zz jz {z \

As the combination pyzpzy /pyypzz is of the order of unit in magnitude it is acceptable to 
ignore the combination keeping in mind that the real value of jy (z -  0) is a half of written 
that.
Here we neglect the inclusion in to transverse current density from electric field 
component Ez as the components are much higher of all others. Using the statement 
about the value of components Pxy comparatively to others mentioned above it is desirable 
to simplify the expression (10) via its linearization:

a (z) =
Py£fXX^X

У У 1 + (П)

PxyPух Ь
У У

X X

Here z coordinate has to be accepted in modulo, it indicates the distance to both symmetric 
"b-c" and "d-a" lines from interface of composite. Due to the chosen symmetry of picture 
these distances are the same. Eq. (11) shows that the transverse current is similar to 
Corbino circular current along closed circular colour but the difference is that the current 
under discussion is generated in the plane contour being parallel to magnetic field but 
Corbino current is generated in the plane contour being orthogonal to magnetic field. So 
using an integral form of equation for electric field circulation along closed contour of 
double strip conductor it is possible to get the expression for the magneto-stimulated 
current. Of course the transverse current is zero if the components of double strip 
conductor are the same in conductivity. Under the conditions of magnetic field absence the 
transverse current is zero too as pxy = 0. Taking into account tensor relations between 
electric field and current density vector the connection for transport current density j x 
distribution with an electric field component along transport direction Ex can be obtained. 
As a result the respective current density j x(z) may be represented as some function of task 
parameters:

a (z) =
xyPyx X X

УУ PyyGyy J_|_____ Pzy

У У

PxyP ух Ь 

P xx

(12)

In this expression the involvement of carriers along z-direction under an action of external 
magnetic field takes place but the level of current generation along z-direction is very 
small in comparison with the scope of transverse and transport current. Actually Hall 
components of resistivity tensor in strong magnetic field are much higher of all other
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components and such an approximation is rather valid. Following equations the values of 
current j y  and transport current j x  are the functions of geometric parameters b and z. For the 
contour line having the ratio zlb being very large that the transverse current is small and j x 

is determined as:

j x  =  E X /  Pxx-

For the contour line having the small ratio zlb the transverse current has definite non-small 
magnitude and respectively the transport current density may be represented as

j x  ~  E x /  P xx. (  1 — (5xx / CJyy )

That value is very small in magnitude because conductivity tensor components and (% 
are of the same order of magnitude.
If the independent variable of task is transport current density j x  the respective component 
of electric field Ex is very large.
Applying the procedure of averaging of transport current through the thickness of strip the 
final expression for the effective resistivity is the next:

1 - R B

\ rxx j

\ 2
b j—In
t

1 + P x x " '2
\RBy

—+1
b

(13)

Here the diagonal component of resistivity tensor p^  may be not only constant as in 
former suggestions but this component is allowed to have more complicated behavior 
close to real that of polycrystalline aluminum when not very strong linear dependence of 
resistivity on magnetic field takes place. The eq.(13) is suitable to describe the current 
flow via composite conductor consisted of copper -  anti-copper components similarly to 
present composite model. The polycrystalline structural action on to conductivity and 
resistivity tensors is to be taken into account. The anisotropy of conductivity of copper 
crystallite is usually averaged dynamically via polycrystalline copper conductor as 
random-inhomogeneous medium. The problem of charge transfer through copper 
polycrystalline conductor under the presence of strong magnetic field is discussed in our 
another Poster where the effective conductivity tensor is supposed in accordance with 
strong linear magnetic field dependence of resistance after Kapitca law. The dynamical 
averaging of conductivity of polycrystalline conductors have been analyzed in many 
articles. We however use more simple averaging on crystalline orientation only because 
more precise procedure leads to result that does not asymptotically differ hard from 
simplified geometrical averaging.
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Fig.2. Effective resistance as a function of ratio bit at different В, T: 3(1); 5(2); 10(3); pxx 
= 5-10'nQ-m

On the base of Eq. (13) the effective resistivity of double strip model composite conductor 
under consideration have been calculated at different values of an external magnetic field 
oriented normally to interface of composite conductor, Fig.2. The linear dependence of 
effective resistivity on width/thickness ratio follows from the (13). In accordance with the 
Eq.(13) the effective resistivity is a function of ratio b/t where t is the thickness of strips. 
So for one limit case when b/t —> 0 the effective resistivity of composite conductor is equal

О 1to diagonal component of resistivity tensor p^. Actually, the function \n(t/b((RB/p) +1)
+ 1) is much less of respective value (RB/p) ~2 (b/t) under condition b/t —> 0. Physically it 
means that the main part of current flows far from the conductor interface so in accordance 
with the principle of the minimum of entropy generation the system trends to such a state 
that ensures the minimal resistance at definite level of current flowing through cross 
section. The transport current density j x is of the order of that for singular conductor under 
this field. Transverse current density j y is zero near interface of conductor. The interface 
does not influence on to current and potential distribution.
Other limit case when b/t -> oo means that the thickness of every strip is so small in 
comparison with width that the process of shortening of transverse electric Hall field of 
every component with each other is a single process that can ensure the potentiality of 
steady electric field. At the condition b/t - » oo the effective resistivity trends to magnitude:

Peff  ̂Pxx ((RB/Pxx) + 1 )

As a result the transverse Hall current is generated and the path of carriers along transport 
direction is occupated with transverse drift so that on the unit length on path along 
transport direction the charge carrier has time to drift in transverse direction and the 
transverse path is of pyjpxx higher than the path in transport direction. As a result the 
collisions of charge carriers with crystal structure imperfections generate a respective 
resistivity being higher of that mentioned above. For this second limit case the effective 
resistivity trends to that of Corbino geometry conductor. For more realistic conditions of 
t/b ratio magnitude a some intermediate case of resistivity have to take place.
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It is necessary to keep in mind that the magnitude of ratio RB/p^ for pure aluminum 
conductor is of the order of 102 or less for the strong magnetic field ( В is of the order of 7 
-8 T,R  = 10'10 Q-m-'T1, -  10'12 Q-m). Respectively for all diapason of relevant values 
of ratio tlb the character of current flow very close to Corbino will take place.
Essentially that for the case of real composite double strip conductor made of aluminum 
and copper the more less linear law of resistivity increase will take place because the 
strong dependence of diagonal component on magnetic field for copper will restrict the 
RB/p ratio. However the contribution to the total process of aluminum component seems 
to be dominant. This task should be analyzed in future.

4. Conclusion

The expression obtained for effective resistivity of double-strip composite conductor 
placed in magnetic field is rather idealized that as it operates with model composite 
material. However the approaches developed for this task here seems to be rather reliable 
as these allow to construct a real physical picture under the presence of opposite types of 
magneto-stimulated anisotropy of conductivity and resistivity tensors. The father steps in 
the study of this problem should be done in the direction of understanding the averaging 
procedure along transverse direction, the analysis of non-symmetric task on geometry and 
on conductive properties of components. The last thesis is adequate to the situation of real 
double-strip composite conductor consisted of aluminum and copper components.
At low temperatures the total current value is more suitable for controlling the charge 
transfer process in highly conducting materials. So it would be reasonable to analyze the 
electric field and current distribution picture from this point of view namely via 
controlling the total current of energy supply via conductor cross section instead of 
controlling the elelctric field. That means that integral current value of energy supply 
source is a basic component of task that has to be attracted for obtaining the electric field 
distribution and energy dissipation that determines the effective resistance.
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