Российская Академия Наук
Научный совет РАН по проблеме
"Физика низких температур"
Министерство промышленности, науки и
технологий Российской Федерации
Уральское отделение РАН
Институт физики металлов УрО РАН
Уральский государственный университет
им. А.М. Горького

33-е ВСЕРОССИЙСКОЕ СОВЕЩАНИЕ ПО ФИЗИКЕ НИЗКИХ ТЕМПЕРАТУР

Екатеринбург, 17-20 июня 2003 г.

О ВЛИЯНИИ ИНТЕРФЕРЕНЦИОННЫХ ПРОЦЕССОВ В РАССЕЯНИИ ЭЛЕКТРОНОВ НА ПРОВОДЯЩИЕ СВОЙСТВА НИЗКОРАЗМЕРНЫХ ПРОВОДНИКОВ

В.Р.Соболь 1.2, Н.В.Францкевич2

¹Институт физики твердого тела и полупроводников НАНБ ул.П.Бровки, 17, 220726 Минск, Беларусь ²Белорусский национальный технический университет пр.Ф.Скорины, 65, 220027 Минск, Беларусь

Волновые свойства электронов сказываются на переносе заряда и расширяют существующие классические представления. Квантовомеханические эффекты изучают, применяя и классические подходы для определения флуктуаций сопротивления, связанных с корреляцией последовательных актов рассеяния на разных примесях [1-3]. В сообщении анализируется электрон-примесное немагнитное взаимодействие в малых образцах на основе борновского приближения для вероятности рассеяния из состояния с волновым вектором k в k' при изотропном законе дисперсии:

$$\tau^{-1} \propto \int (1 - Cos\phi) \sum_{i,k} |\nu_{kk'}|^2 \exp(R_i, R_k) d\Omega; \quad (R_i R_k) = -i(k - k')(R_i - R_k)$$
 (1)

здесь τ - время релаксации, ϕ - угол между k и k'. ($\upsilon_{xx'}$ - блоховская составляющая мат-

ричного элемента энергии взаимодействия с примесями в положении R_i и R_k от функции $\exp(ikr)u_k(r)$). Суммирование по индексам i и k независимое и имеется N_i^2 членов (N_i число примесей). Для совпадающих значений i и k часть суммы равна N_i , что и используется как конечный результат для больших образцов. Для образцов малых объемов и больших концентраций примесей c вероятен вклад недиагональных матричных элементов изза уменьшения степени осцилляций. Отметим, что учесть недиагональные элементы через усреднение по объему сферы возможно лишь с определенными ограничениями. Интеграл $\iiint \exp[i(k-k')R]R^2 Sin\theta d\theta dR d\varphi \text{ эквивалентен } \iiint i'(2l+1)j_i(kR)P_i(Cos\theta)R^2 Sin\theta d\theta dR d\varphi$ ($j_i(kR)$)— сферические функции Бесселя, $P_i(Cos\theta)$ - полиномы Лежандра, $k=\lfloor k-k' \rfloor$) и интегрирование по углу θ между k-k' и R приводит к функции f(kR), которая определяется через $P_{i=0}(Cos\theta)$ и равна $f(kR) = 4\pi R^3 \{-kRCos(kR) + Sin(kR)\}(kR)^{-3}\}$ с пределами для R от среднего расстояния между примесями ΔR до размера образца L. Физический смысл f(kR) сохраняется только в случае kR < 1, что подтверждается видом коэффициента F, описывающего фигурную скобку в выражении для f(kR) (Puc.1). При конечном значении вели-

чины R это справедливо для $k - k' \to 0$, когда частное от деления f(kR) на объем, приходяшийся на атом примеси, равно N_i [4]. Чтобы оценить вклад недиагональных членов при произвольном значении k - k', рассмотрим элементы $\exp[-i(k - k')R_iCos\theta_i]$.

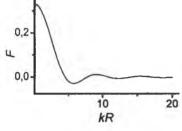


Рис. 1. Коэффициент F как функция kR.

Естественно, что для значений θ_i , которые приводят к малости (k-k') R_i , подинтегральные члены дадут конечный вклад [5]. Если при суммировании в (1) 6 зафиксировать как $Sin[(N_1 + 0.5)(k - k')\Delta RCos\theta] \{2Sin[0.5(k - k')\Delta RCos\theta]\}^{-1} - 0.5 - i\alpha$. Bropan θ . получим: сумма комплексно сопряжена указанному выражению. Поскольку фаза в (1) определяется величиной $\cos \theta$, и радиус - вектором примесного атома, можно оценить величину угла θ , в пределах которого осциллящии отсутствуют и который лежит вблизи нормали к k-k': $|\theta' - \pi/2| \le \pi/2 [(N_i + 0.5)(k - k')\Delta R]^{-1}$. Видно, что N_i не должно быть большим при малости ДР. что означает малость размеров, когда примеси дают конечный вклад, пропорциональный N_i^2 . Эффективность такого взаимодействия пропорциональна его вероятности среди других возможных исходов, то есть отношению θ' к полному углу. В результате искомая поправка имеет порядок $N_{i}[(k-k')\Delta R]^{-1}$, и τ^{-1} можно представить как сумму диагонального члена и поправки: $\tau^{-1} \propto N_i (1+c^{1/3}) [(1-Cos\phi)d\Omega]$. Таким образом, для малых по объему образцов интерференция амплитуд вероятности рассеяния электрона, вызываемая недиагональными матричными элементами энергии взаимодействия, приводит к уменьшению среднего времени между столкновениями т.

Список литературы

- [1] А.А.Абрикосов, Основы теории металлов. М., Наука (1987).
- [2] Ю.М.Гальперин, В.И.Козуб, ЖЭТФ, 100, 323 (1991)
- [3] V.I.Kozub, A.A.Krokhin, J. Phys. Condens. Matter, 5, 9135 (1993).
- [4] V.R.Sobol, O.N.Mazurenko, Herald Russian Acad. Tech. Sci, 1, 699 (1994).
- [5] V.R.Sobol, O.N.Mazurenko, Proc.conf:Phys.Chem.Appl.Nanostruct., Minsk, 266 (1995).