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Domination of Cyclic Monotone (s, t)-Graphs
A. A. Chernyak UDC 519.1

ABSTRACT. The conjecture of zero domination of 0-cyclic monotone graphs is proved (an r-cyclic graph is
a cyclic monotone (s, t)-graph exactly r minimal paths of which have cycles). As a corollary, a formula for
computing the reliability of an arbitrary 0-cyclic monotone graph is obtained. It is proved that the problem
of determining the domination in the class of r-cyclic monotone graphs is #P-complete for any fixed integer
7 2:1.
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1. Introduction

Domination theory, initiated in [1], gave an impetus to the development, of combinatorial methods for
solving network reliability problems. It served as a basis for essentialljhew algorithms for computing the
reliability of stochastic graphs. Later on, in [2-8], the range of ‘applicability of this theory was expanded
and the connection of domination parameters with matroid dnvatiants and reliability polynomials was
established. ‘

However, the diversity of network models of reliability” calléd for extending domination theory to sto-
chastic graphs with more complex logical functions of their wertices. For instance, acyclic monotone (s, t)-
graphs, first introduced in [9], admit arbitrary monotone/Boolean functions at vertices (the only kind of
vertex functions allowed in ordinary stochastic_graphs are elementary disjunctions; see Sec. 2). Acyclic
monotone (s, t)-graphs include as particular cases the classical models of multi-terminal reliability of di-
rected graphs [10-13]. In [14], the notiongef leg¢al domination was introduced and a formula effectively
computing the domination of acyclic monotoné (s, t)-graphs in terms of local dominations of its vertices
was obtained. This revealed the common combinatorial nature of earlier results (1, 10, 11, 15, 16] concern-
ing the domination of directed graphs\without cycles. But the problem of determining the domination of
cyclic monotone (s, t)-graphs remained open.

This article fills this gap. Namély, Theorem 1 proves the conjecture [7, 14] about zero domination of 0-
cyclic monotone graphs (anf{r -cyclic monotone graph is a cyclic monotone (s, t)-graph in which exactly =
minimal paths have cycles). As a corollary, a formula for computing the reliability of an arbitrary 0-cyclic
monotone graph (Corollary 1) is obtained. It is proved that the problem of computing the domination
in the class of r-cyclic monotone graphs is #P-complete for any fixed integer 7 > 1 (Theorem 2). It
should be mentioned that the results concerning cyclic graphs from [1, 5, 10, 11, 17] directly follow from
Theorem 1 (two of these results are given in Corollaries 2, 3).

2. Monotone (s, t)-graphs: preliminary definitions

All the graphs considered below are assumed to be directed. Let VG, DG be the sets of vertices and
edges of a graph G, respectively. By (u,w) we denote the edge directed from u to w; by D% (v, G)
(D~ (v, G)), the set of edges of the graph G directed to the vertex v (from the vertex v, respectively). A
sequence of edges e; = (v;,v;41), ¢ =1,...,n, is called a simple chain (or a (v;, v,41)-chain) if all the
vertices v1, ..., Vn4+1 are pairwise distinct. If only the vertices vy, ..., v, are pairwise distinct, whereas
¥1 = vUn41, then this sequence of edges is called a cycle. If a graph G contains at least one cycle, it is
called cyclic; otherwise, G is called acyclic; G is called an (s, t)-graph if

s,teVG, D (t,G)=D"(s,G)=2, D (v,G)#9, D*(v,G)# o
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for any vertex v € VG \ {s, t}; the vertices s and ¢ are called the input and output poles of the graph G,
respectively.

Now let us define a monotone (s, t)-graph G. With each vertex v # s of the graph G, we associate
the collection th(v, G) of threshold sets of the vertex v in G, the subsets of D+ (v, G) with the following
properties:

(a) none of the threshold sets is contained in another;
(b) each element from D (v, G) belongs to a certain threshold set from th(v, G).

If all threshold sets from th(v, G) are of the same cardinality k& and each k-element subset in D" (v, G)
lies in th(v, G), then the set th(v, G) is called symmetric and the number k is called its threshold number.

An (s,t)-graph H is called a minimal path of a graph G if it is a subgraph of G such that for each
vertex v € VH \ {s} the set D" (v, H) is a threshold set of the vertex v in G.

Also, we assume that to each edge e of the graph G the indicator function z. is assigned that takes the
value 1 with a given probability p.. The reliability of the graph G is defined as the probability that G
contains at least one minimal path such that all the indicator functions of its edges take the value 1.

A graph G thus defined is said to be a monotone (s,t)-graph. The deﬁmtlon of an 7-cyclic monotone
graph was given in Sec. 1.

A subgraph H of a monotone (s, t)-graph G is called a regular sub_q'ruph 1 it can be represented as
the union of minimal paths of the graph G. In addition, we assume, that the collection th(v, H) of the
threshold sets of the vertex v in the graph H consists exactly of the threshold sets from th(v,G) that
are contained in the set D" (v, H) (in other words, th(v, H) is mduced by the set th(v, G)).

Let us consider a number of particular cases of monotone (s, t) -graphs.

(1) A 2-terminal stochastic graph [1, 12]. It is an (s,t)-graph G whose reliability is defined as the
probability that G contains at least one (s, t)-chain such-that the indicator functions of all its edges take
the value 1.

In terms of our definitions, G is a monotone (4, ¢)-graph in which the set th(v, G) for each vertex
v # s is symmetric with threshold number 1, apd the.minimal paths of G are its (s, t)-chains.

(2) A source- K -terminal stochastic graph [0, 12]. Suppose that a graph H has one input pole s and
aset K = {t1,...,t,} of output poles. The teliability of H is defined as the probability that there is
at least one K -tree such that the indicator/functions of all its edges take the value 1 (a K -tree is a tree
with root s whose hanging vertices all beleng to the set K ; a hanging vertez is a vertex adjacent to a
single edge, the edge being directedito,this vertex).

Let us add to H a new vertexi¢ and r new edges (¢;,t), ¢ =1,...,r, whose indicator functions take
the value 1 with probability 4. Pehote the new graph by G. Then, by our definitions, G is a monotone
(s, t)-graph in which th(t,G") is,a’one-element set with threshold number r, and th(v, G) for each vertex
v # s,t is a symmetric set"With threshold number 1.

(3) An acyclic monotone (s, t)-graph [8, 13-15]. Let us assign to each vertex v # s of an (s, t)-graph G
the vertex function g(v, G) = g(z1,..., 2,) defined as the disjunction of |th(v, G)| elementary conjunc-
tions z;, , ..., z;, bijectively corresponding to the threshold sets {e;, , ..., e;, } € D*(v, G) from th(v, G).
In addition, set g(s, G) = 1. Also, the output signal y, is defined to be equal to the value of the vertex
function g(v, G). The Boolean variable z; is set to be equal to 1 if and only if the indicator function z;
of the edge e; = (w;,v) takes the value 1 and y,, = 1. Then the reliability of G is defined as the
probability of the event y; = 1.

3. Domination of cyclic graphs

Let G be a monotone (s,t)-graph. A formation of the graph G is the subset of its minimal paths
whose union is G. The minimal paths here are called components of the formation. A formation is said
to be even or odd depending on the parity of the number of its components. The domination d(G) of the
graph G is the difference between the numbers of odd and even formations of the graph G. If G is not
a regular graph, then by definition, d(G) = 0.

A local formation of a vertex v # s in G is a subset of threshold sets from th(v, G) whose union is
D* (v, G). The difference d(v, G) between the numbers of odd and even local formations of a vertex v # s
in G is called the local domination of the vertex v. It is assumed that d(s,G) = 1.
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A set of minimal paths of the graph G is called a covering of a subgraph H if each edge of H belongs
to at least one minimal path from this set.

Lemma 1. Let G be a regular 0-cyclic monotone (s,t)-graph. Then there erists a pair (L, F) such
that L is a cycle in G and F is a minimal path in G that does not belong to any minimal (by inclusion)
covering of the cycle L.

Proof. We shall say that an edge ¢ = (w, v) in the graph G is irreducible if it is contained in each
threshold set of the vertex v; otherwise, e will be called a reducible edge.

First we suppose that there exist a cycle L and a minimal path F such that F does not contain any
reducible edges of the graph G belonging to L. Also, we suppose that P is a minimal covering of the
cycle L that belongs to F'. Then there exists an edge e; = (u;, u2) in L N DF that does not belong to
any minimal path from P\ {F}.

Set L =ep,...,e,, where e; = (u;,ui41), 1 =1,...,m, uy = up4+1. Let k be the smallest ¢ such
that e; ¢ DF (this k exists by acyclicity of F). Then e; belongs to a certain minimal path A from P
and the edges e;,...,ex_y are irreducible. The definitions of irreducibility and minimal path yield the
implication

(uiy1 € VA) = (e; € DA).

It foliows that e; € DA. A contradiction. Now it remains to prove the existence of a pair (L, F) such
that the minimal path F does not contain reducible edges of the cyéle L

To prove this fact, we shall need the following procedure, denoted by Proc(t L), for constructing a
subgraph of the graph G in accordance with a certain rule of choice L:

Step 1. Declare the vertex s to be boundary. Set VH = @, DH = &, u =1t and proceed to Step 2.

Step 2. Declare the vertex u to be boundary. Choose a threshold set T(u) € th(u, G) according to the
rule £ and set

VH = VHU {u} U {initial vertices of the edges of the threshold set T'(u)}, DH = DHUT(u).

Declare the initial vertices of the edges from T'(u) to be potential vertices. Proceed to Step 3.

Step 3. Choose an arbitrary vertex u that.is potential but not boundary. If there are no such vertices,
the procedure is complete; otherwise, pass to Step 2.

Now let C be an arbitrary cycle in/G . Sinice G is coherent, there exists an (s, t)- cham R=q,.--,qn
that has common edges with C. Let us take the two vertices v, and v; in the set VRNV closest to
the vertices s and ¢, respectively, counting along the chain R. Denote by C; the sequence of edges of
the cycle C that constitutes‘a (v,, v;)-chain; let g,_; and ¢; be the edges of the chain R directed to
the vertex v, and from the vertex v;, respectively. Obviously, P = ¢1,...,¢r—1, C1, qi,...,qn is an
(s,t)-chain in G and VPNVC = VC;. It follows that the implication

(u € VCNVP, u#uv,, vuis an edge of the cycle C) = (vue PNC) (1)

is true.
Denote by A the subgraph constructed by the procedure Proc(t, £,) according to the following rule
of choice L;:
if ue VP, then T(u)N P # 2;
if ue VC\ VP, then T(u)NC # @;
in the remaining cases the choice of the threshold set T'(u) is arbitrary.
By the definition of the rule £;, we have P C DA. Therefore, A is an (s, t)-subgraph. Hence, by the
definition of Proc(t, £), A is a minimal path.
Now denote by B the subgraph constructed by the procedure Proc(t, £2) according to the following
rule of choice Lo (here Q =gq;,.-.,gr-1):
if |th(u, G)| > 1, ue VA, v ¢ VQ, then T(u) # D*(u, A);
if vu is a reducible edge of the cycle C, then vu ¢ T(u);
if ue VQ, then T(u) C DA;
in the remaining cases the ch01ce of the thr%hold set T(u) is arbitrary.
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The first two conditions of the rule £, are consistent. Indeed, if vu is a reducible edge of the cycle C,
u€ VA, u¢ VQ, then in view of (1) and the rule of choice £;, we have vu € DA, i.e., we can always find
a threshold set T(u) which does not contain vu and at the same time does not coincide with D*(u, 4)-

If B is a minimal path, then the pair (C, B) is the desired one, because B does not contain reducible
edges of the cycle C. Suppose that this is not true. Then B does not contain (s,t)-chains, and so
VBNVQ = &. Hence the implication

(th(v,G) > 1, ue VBNVA) = (D*(u, B) # D*(u, A))

is true (see the definition of the rule of choice £3). Therefore, to each vertex u € B, we can assign an
edge e(u) as follows:

if |th{u, G)| > 1, then e(u) € D¥(u, B)\ D*(u, A);

if {th(u, G)| =1, then e(u) € D*(u, B).
Denote by R the subgraph of the graph B with the set of edges {e(u) : u € VB}. Let N be a cycle
in the graph R (such a cycle exists, because R does not contain (s, t)-chains and D*(u, R) # @ for all
v € VR). If e(u) = wu is a reducible edge of the cycle N, then |th(u; G)| > 1, and so e(u) ¢ DA.
Therefore, (IV, A) is the desired pair. This completes the proof of Lemmal. 0O

If P a set of finite subsets, then we shall denote by od(P) and ev(P) the numbers of elements from P
of odd and even cardinality, respectively. '

Theorem 1. Let G be a regular 0-cyclic monotone (s, t)-graph. Then d(G) =0.

Proof. Suppose that 0-cyclic monotone graphs with nonzero domination exist. Among these graphs
we choose the graph G with the smallest number of edges. By Lemma 1, there exists a pair (L, F) such
that L is a cycle in G and F is a minimal path not belonging to any minimal covering of the cycle L.
Denote by Py the set of formations of the graph G that do not contain F, by P, the set of formations
of G obtained by adding to each formation from P, the minimal path F, and by P3 the set of all other
formations of the graph G (each of them contains F). Obviously, od(P;) = ev(P2), od(Pz) = ev(P1).

Now let £ be the set of subsets of minimal paths obtained by removing the minimal path F from each
formation of P3. Then each element fromi £ defines a certain proper subgraph of G (by the definition
of P3). Let {H;:i=1,...,n} beétheset of such subgraphs. By the choice of the pair (L, F), each H;
contains the cycle L. But then by the induction conjecture, d(H;) =0, i =1,...,n. Further, we have

3 n

d(G) = E(od(‘Pi) — ev(P;)) = od(P3) — ev(P3) = —(0d(€) — ev(£)) = — Z d(H;) = 0.

i=1 =1
A contradiction. The proof is complete. O

Denote by Pr(H) the probability that the indicator functions of all edges of the graph H take the
value 1.

The following statements are immediate consequences of Theorem 1 and [14, Theorem 1].

Corollary 1. Suppose that G is a 0-cyclic monotone (s, t)-graph, R(G) is the set of its regular acyclic
subgraphs, and Rel(G) is the reliability of the graph G. Then

Rel(G)= »_ d(H)-Pr(H),
HeR(G)

where d(H) = [],cy 4 d(v, H).
Corollary 2 (see [1]). The domination of a cyclic 2-terminal graph is 0.
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Corollary 3 (see [5, 10, 17]). The domination of a cyclic source- K -terminal graph is 0.

Our treatment of the notion of # P-completeness of enumeration problems follows the papers {18, 19].

Let us give one more definition. Suppose that £ = {e;,...,e,} is a set of elements; P = {Py, ..., Py}
is a set of subsets (called minimal paths) of the set £ such that P,  P; for any ¢ # j. The pair €, P]
is called a binary system. If the cardinalities of all minimal paths from P are equal to k, then [£,P]
is called a k-uniform system. A formation of the system (£, P] and its domination d[£, P] are defined
similarly to the corresponding notions for monotone graphs.

Theorem 2. The problem of computing the domination is # P -complete in the class of r -cyclic mono-
tone graphs for any fized integer r > 1.

Proof. The following problem (denoted by DS(2)) is known [20] to be # P-complete:
input: a 2-uniform system (£, P);
output: the domination d[€, P].

Let us take an arbitrary 2-uniform system [£,P]. We define an (s, t)-graph G as follows:

VG = {s,t,v,w, ur,...,Unt+r},
DG = {(w, t), (w,v), (v, w), (s,w), (u;,w) : i =1,.. ,n+r}

Also, we set eg = (v, w), €; = (w5, w), i =1,...,n+7. We identify £ with the set of edges {e;,...,€en}
and specify the threshold sets of vertices in G as follows: each of the'sets th(¢, G), th(v, G), and th(u;, G),
t=1,...,n+r, consists of the single threshold set (the edge directed to the corresponding vertex)

th(w,G) = {P1,..., Pn, {eg,€}ii=n+1,...,n+7}.

It is readily verified that exactly r minimal paths of the graph G contain the cycle (w,v), (v,w)
(these minimal paths contain the threshold sets {€g, €;}), the remaining m minimal paths are acyclic. In
a‘ddition’ d(G) = d(wa G) = d[g* ) ’P*] y where &%= {eOa RS en+7‘} , P* = th(wa G) :

Set '

Pl ={P1,..., Pn, €nt1,---s€nir}, P ={P1,...,Pn}, & =&\ {eo}-

Then, by the familiar factoring of domination Theorem (6], we have
dig™, P*) = dl&g, P1] - dl&;, P3)-

Since £; contains elements that do not belong to any minimal path from P}, we have d[£},P3] =0. In
addition, d[£5, Pf] = (—1)"d[€, P], because formations of the system [£F,P}] bijectively correspond to
the formations of the system [£, P] free of the minimal paths €,,1, ..., €é,+. Hence d(G) = (-1)"d[€, P],
which establishes the polynomial Turing reducibility of the problem DS(2) to the problem of computing
the domination in the class of r-cyclic monotone graphs. This proves Theorem 2. O
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