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A graph G is called pseudodomishold if there are nonnegative real numbers ¢, ..., ¢,, ¢
(not all of them zero) such that for every subset U of VG and for its characteristic zero-one
vector (4, . . ., €,) the implications

(t<c,ey +---+¢,e,)> (U is a dominating set of G),
(¢t>c,ey+ - - +c,e,)> (U is not a dominating set of G)
are true.

A pseudodomishold graph is called a hereditary one (briefly, HP-graph) if every its induced
subgraph is also pseudodomishold.

In this note we describe the structure of HP-graphs in terms, of the composition of simplest
components and minimal forbidden induced subgraphs. This result gives rise to a simple
recurrence formula and estimates for the number u,, of n-vertex HP-graphs. It also implies the
linear-time algorithms recognizing HP-graphs and their'degree sequences.

Up to now the various classes of P-threshold graphs, namely threshold,
pseudothreshold and boxthreshold, have ‘been thorough studied. A number of
structure characterizations, recognition algorithms, classification and enumeration
aspects concerning P-threshold graphs can be found in [1-9]. There has been little
knowledge of pseudodomishold graphs. Unlike thresholdness, pseudothreshold-
ness and domisholdness in definition of which a separating hyperplane plays a
principal role, pseudodomisholdness is not a hereditary property, i.e. it is not
preserved in proceeding to some induced subgraph. The aim of this communica-
tion is to give description and enumeration of hereditary pseudodomishold graphs
(briefly, HP-graphs). It is’ a rather wide class containing the ones of domishold
and threshold graphs [1-2].

The main result' is Theorem 1 characterizing HP-graphs in terms of the
composition of the simplest components and minimal forbidden induced sub-
graphs. It, in turn, gives rise to a simple recurrence formula and estimates for the
number u, of n-vertex HP-graphs (Corollaries 1-2). Theorem 1 also implies an
easy guessed linear-time algorithms recognizing HP-graphs and their degree
sequences. It is interesting to compare the estimates for u, with the asymptotics
for the number d,, of n-vertex domishold graphs given in Corollary 3.
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All graphs considered are finite, undirected, without loops and multiple edges.
VG is the vertex set of a graph G and EG is its edge set. A n-vertex graph G is
called pseudodomishold if there are nonnegative real numbers c;, . . ., ¢,, f, not
all of them equal zero, such that for every subset U of VG we have

(c,ey + -« - + c,e, > t) > (U is dominating), a
(cie, + -+ - + c e, <t} (Uis not dominating)
where (e, . . ., e,) is the characteristic vector of U.
If the first inequality in (1) were substituted by the nonstrict inequality
ciey+ - +c,e, =t we would have the definition of a domishold graph [1].

Notation. G is a graph being complementary to G. K, is a n-vertex complete
graph. M is the set of graphs H such that either any vertex degree in H exceeds
|VH| — 4 (i.e. all connected components of H are only chains or cycles) or H is a
S-vertex chain. ¢, is the number of n-vertex graphs from M not containing
dominating vertices, isolated vertices and 2-vertex edgeless dominating sets.

So called Forbidden configurations are shown in Fig. 1: broken lines indicate
non-edges.

We will write G(A, B) if the fixed partition VG =A U B is meant (AN B =).
One of the parts A, B can be empty. If G = K, then Q,, will denote G(VG, 0). If
G = K, then O, will denote G(@, VG). If G is a 4-vertex chain then P, will denote
the graph F(A, B) where |A| =|B|=2 and B consists‘of vertices with degrees
being equal to 1. '

The composition ° is defined as follows [8]: given G(A4, B) and H, VHN
VG = then

G(A, B) o i = GUHUKA’VH
where U is the sign of the union of graphs, K, vy is the complete bipartite graph
with parts A and VH.

Theorem 1. The following assertions are equivalent:
(i) G is a HP-graph.
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Fig. 2.

(ii) G contains neither forbidden configurations shown in Fig. 1 nor induced
subgraphs shown in Fig. 2.
(iii) G can be represented in the form

G=X,0---0X, o H m=0,
where He M, X, e {Qy, @2, O,, Py}

Corollary 1.

x)+x—-x°

u(x)=.-—x"‘+x3—x2—2x+1

where u(x) = Lo_qu,x", t(x) = Yy t,x"

Corollary 2. Forn=6
2,32 '<u,<(2,37)" L

Corollary 3. If d,, is the number of n-vertex domishold graphs then

3
- —-x"+t+x
d0)= 2 dx" =" o pesh
and
d,~cr’

where r is the maximum (in abselute value) root of the equation x> — 2x* —x +1=0
(r=2, 24).

Problem. What is the complexity of recognizing pseudodomishold (not necessary
hereditary) graphs?
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