Note on complexity of computing the domination of binary systems

A.A. Chernyaka, Zh.A. Chernyakb,*

a State Economic University, Minsk, Republic Belarus
b State University of Radioelectronics and Informatics, ul. F. Brovki, 6, Minsk, Republic Belarus

Received 7 March 1996; revised 24 September 1996
Note

Note on complexity of computing the domination of binary systems

A.A. Chernyak, Zh.A. Chernyak

*State Economic University, Minsk, Republic Belarus
*State University of Radioelectronics and Informatics, ul. P. Brovki, 6, Minsk, Republic Belarus

Received 7 March 1996, revised 24 September 1996

Abstract

The problem of computing the domination of a coherent binary system all minimal paths sets of which have equal cardinality \(k \) \((k > 1)\), is proved to be \#P-complete. Some corollaries are given.

1. Introduction

The domination theory plays an important part in the study of reliability. Satyanarayana and Prabhakar [13] were the first who defined the domination and evaluated it for directed \((s, t)\)-graphs. Starting with their paper, a sequence of papers has succeeded in characterizing the domination of a system in a number of reliability contexts. Particularly, as shown in [2, 12] the domination theory provides the bases for selecting optimal pivoting strategies. Relations between the domination and matroids are developed in [8] to extend some important domination results to reliability of more general systems. In [7] the domination is interpreted as a partial derivative of the reliability polynomial for studying a length-criterion rooted communication problem. In [3–6] the domination theory is extended to monotone \((S, t)\)-graphs, including some well-known network reliability models as special cases.

In this note we prove (Theorem 1) that the problem of computing the domination for binary coherent systems all minimal paths of which have the fixed cardinality \(k \), \(k > 1 \), is \#P-complete. (Note that the \#P-complete class defined in [14] contains problems which are at least as hard as NP-complete ones.) This implies the \#P-completeness of the similar problem for monotone \((S, t)\)-graphs (Corollary 1).

* Corresponding author.
It is interesting to note that in a number of cases such as rooted directed graphs [11, 13], k-out-of-n systems [2], monotone (S,t)-graphs with all vertex functions being symmetric [4], the domination is expressed in a simple analytic form and, hence, can be evaluated efficiently. As for binary coherent systems, the problem of computing the domination turns out to be, in a sense, not more difficult than that of computing the reliability (Proposition 1). This implies, in particular, the polynomial solvability of computing the domination of shellable, regular and threshold systems (Corollaries 2 and 3).

2. Preliminaries

Let $S = \{1, 2, \ldots, n\}$ be a set of elements and $P = \{P_1, \ldots, P_m\}$ be a family of minimal paths where $P_i \subseteq S$, $P_i \cap P_j$ for $i \neq j$ and $S = \bigcup_{i=1}^m P_i$. For a $(0, 1)$ n-vector $x = (x_1, \ldots, x_n)$ we define the $\text{supp}(x)$ as the set $\{j : j = 1, \ldots, n, x_j = 1\}$. The vector x is called a characteristic vector of a set $A \subseteq S$ if $\text{supp}(x) = A$. Let

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is a characteristic vector of a set } A \\
0, & \text{otherwise.}
\end{cases}$$

Then f is called the structure function of the pair (S, P). Obviously, f is a monotone Boolean function. The triple (S, P, f) is called a coherent system (abbreviated (S, P)). The coherent system is k-uniform if $|P_i| = k$ for $i = 1, \ldots, m$. We call a vector x an operative point (OP) of the function f if $f(x) = 1$.

A formation of S is a set of minimal paths whose union is S. It is odd (even) if the number of minimal paths is odd (even). The domination $d(P)$ of (S, P) is the number of odd formations of S minus the number of even formations of S.

Given the rational n-vector $\overline{p} = (p_1, \ldots, p_n)$, $0 < p_i < 1$, $i = 1, \ldots, n$, we suppose that every element i of S is subject to random failure, independently of others and with the probability $q_i = 1 - p_i$. Then reliability $h((S, P, f), \overline{p})$ of the system (S, P, f) is the probability that there is at least one minimal path of P consisting of operative elements. We also need some other expression of h. To this end, we define the probability weight $\text{prob}(x)$ of a vector x as follows:

$$\text{prob}(x) = \begin{cases} p_i, & \text{if } x_i = 1, \\
q_i, & \text{if } x_i = 0.
\end{cases}$$

Now the value $h((S, P, f), \overline{p})$ can be determined as the sum of probability weights of all OPs of f.

We explore the computational complexity of counting problems in the manner proposed in [14]. The $\#P$-class is defined to be the set of rational functions that can be computed by counting the number of accepting computations of some nondeterministic Turning machine of polynomial complexity. We say that a function f is polynomially
reducible to a function \(g \) if there exists an algorithm which, for input \(z \), evaluates \(f(z) \) with a number of elementary operations and evaluations of \(g \) that is polynomial in the length of \(z \). A function \(f \) is called \(\#P \)-complete if (a) \(f \) is in \(\#P \) and (b) every function \(g \) in \(\#P \) can be reduced to \(f \) by a polynomial time reduction. In what follows we will not distinguish between functions and corresponding counting problems.

3. Main results

We define the size of a rational number \(r \) to be the value \(\text{size}(r) = \log(u) + \log(v) \) when \(r \) is presented as a fraction \(u/v \) in the lowest terms. The size of a rational \(n \)-vector \(\vec{r} = (r_1, \ldots, r_n) \) is then defined as \(\text{size}(\vec{r}) = \max\{\text{size}(r_i) : i = 1, \ldots, n\} \).

Lemma 1 (Valiant [14]). (i) If \(g(x) \) is an \(n \)th degree polynomial with rational coefficients and its value is known at each of the distinct rational points \(x_1, \ldots, x_n \), then the coefficients of \(g \) can be deduced in time polynomial in \(n \) and the maximum of \(\text{size}(x_i), \text{size}(g(x_i)) \), \(i = 1, \ldots, n + 1 \).

(ii) Let
\[
g(x) = \sum_{i=1}^{n} a_i x^i (1 - x)^{n-i}
\]
be a polynomial with nonnegative integer coefficients bounded by \(A \). If the value \(g(x_0) \) is known at a rational point \(x_0 \) and \(0 < x_0 < A^{-1} \) then the coefficients \(a_i \) can be deduced in time polynomial in \(n, \text{size}(A) \) and \(\text{size}(x_0) \).

Theorem 1. The following counting problem is \(\#P \)-complete:

DOMINATION OF \(K \)-UNIFORM COHERENT SYSTEM (abbreviated \(\text{DS}(k) \))

Input: \(k \)-uniform coherent system \([S, P] \), \(k \) is fixed, \(k > 1 \).

Output: signed domination \(d(P) \).

Proof. Obviously, the counting problem \(\text{DS}(k) \) is in \(\#P \). We will show it is \(\#P \)-complete. First, let \([S, P] \) be any coherent system. As proved in [8],
\[
d(P) = \sum_{r=1}^{n} (-1)^{n-r} A_r \tag{1}
\]
where \(A_r \) is the number of \(r \)-element sets of \(S \) containing minimal paths. It follows that
\[
d(P) = \sum_{r=1}^{n} (-1)^{n-r} \left(\binom{n}{r} - B_r \right) = \sum_{r=1}^{n} (-1)^{n-r} \binom{n}{r} + \sum_{r=1}^{n} (-1)^{n-r+1} B_r,
\]
where \(\binom{n}{r} \) is the binomial coefficient, \(B_r \) is the number of \(r \)-element sets of \(S \) not containing minimal paths. As
\[
\sum_{r=0}^{n} (-1)^{n-r} \binom{n}{r} = 0,
\]
we can transform the above equality into the following one:

\[d(P) + (-1)^r = \sum_{r=1}^{n} (-1)^{n-r+1} B_r \]

or

\[(-1)^{n-1} d(P) - 1 = \sum_{r=1}^{n} (-1)^r B_r. \]

Denote by \(md(P) \) the left part of the last equality.

The following counting problem is \#P-complete [9]:

INDEPENDENT SET (abbreviated IS)

Input: graph \(G \) with a vertex set \(VG \) and an edge set \(EG \).

Output: number of independent sets of \(G \), where \(I \subseteq VG \) is called independent if, for all \(u,v \in I, (u,v) \notin EG \).

We will prove that IS is polynomially reducible to the counting problem DS(2). Given an instance \(G = (VG, EG) \) of IS, let \(S = VG \) and \(P = EG \). Then, \([S,P] \) is a coherent system, and the independent sets of \(G \) are exactly the subsets of \(S \) not containing any minimal paths. Hence, the number of independent sets of \(G \) is equal to \(1 + \sum_{r=1}^{n} B_r \).

Let \(VG = \{v_i: i = 1, \ldots, n\} \). For each \(r, 1 \leq r \leq n \), we construct a graph \(G_r \) with the vertex set \(VG_r = \{v_{ij}: i = 1, \ldots, n, j = 1, \ldots, r\} \) and the edge set \(EG_r \), such that \((v_{ij}, v_{il}) \in EG_r \) if and only if \((i = s) \) or \((v_i, v_s) \in EG \).

Every independent set \(U' \) of \(G_r \) has the property that

\[|U' \cap \{v_{ij}: j = 1, \ldots, r\}| \leq 1 \quad \text{for} \quad i = 1, \ldots, n. \quad (2) \]

Each independent set \(U \) of \(G \) induces a class \(I(U) \) of independent sets \(U' \) of \(G_r \), by the following way:

\(v_{ij} \in U' \) for some \(j \) if and only if \(v_i \in U \).

Obviously, the cardinality of \(I(U) \) is \(t^{r-1} \) and classes \(I(U) \) cover all independent sets of \(G_r \) because of (2). It follows that the number of \(r \)-element independent sets of \(G_r \) is \(B_r \cdot t^r \).

Now let \(S_r = VG_r, P_r = EG_r \), and \([S_r,P_r] \) be a coherent system. Then

\[md(P_r) = (-1)^{n-r} d(P_r) - 1 = \sum_{r=1}^{n} (-1)^r B_r. \]

Hence, applying Lemma 1(i) to the polynomial

\[g(x) = \sum_{r=1}^{n} (-x)^r B_r, \]

we can evaluate the numbers \(B_r \) and, in particular the value \(\sum_{r=1}^{n} B_r \), in time polynomial in \(n \) and maximum of the values \(\text{size}(d(P_r)) \). That solves the counting problem IS in polynomial time. The reduction follows.

The polynomial reduction \(DS(k) \) to \(DS(k+1) \) is becoming evident if we consider the coherent system \([S \cup \{z\}, P']\) obtained from \([S,P]\) by adding a new element \(z \) to each
of the minimal paths P, i.e. $P' = \{P_1 \cup \{x\}, \ldots, P_n \cup \{x\}\}$. It is clear that $d(P) = d(P')$.

This completes the proof of the theorem. ∎

Proposition 1. If the reliability of a coherent system (S, P, f) can be computed in time polynomial in n and m, then the same is valid for computing the domination of that system.

Proof. Let A_r be the number of OPs of f having r unit components. Choose p_0 to be equal to $1/2^n$. Obviously,

$$h([S, P], p_0) = \sum_{r=1}^{m} A_r p_0 (1 - p_0)^{n-r}.$$

Keeping in mind that $A_r < 2^n$, we conclude from Lemma 1(ii) that numbers A_r can be computed in time polynomial in n and m. Now the proposition follows from formula (1). ∎

4. Corollaries

Now we give the definition of a monotone (S, t)-graph. Let $G(V, E)$ be a directed graph with source vertices S and a sink vertex t. Given a vertex $v \in V \setminus S$, it is assigned to v a set $\text{th}(v)$ of subsets (so-called threshold kits) of the set $\text{Adj}(t, G)$ consisting, in turn, of vertices u such that $(u, v) \in E$. In fact, the signal passability across a vertex v is carried out in accordance with a monotone Boolean function with the set $\text{th}(v)$ as that of its prime implicants (strict definitions were presented in [6]).

A local formation of a vertex $v \in V \setminus S$ is defined to be a subset of threshold kits from $\text{th}(v)$ whose union is $\text{Adj}(t, G)$. It is odd (even) if the number of kits in it is odd (even). The local domination $d(v, G)$ is the number of odd local formations of v minus the number of even local formations of v. We set $d(v, G) = 1$ for every $v \in S$. It was proved in [6] that the domination of an acyclic monotone (S, t)-graph is equal to the product of all its local dominations.

Corollary 1. The problem of computing the domination of monotone (S, t)-graphs is $\#P$-complete.

Proof. Let (S, P, f) be a 2-uniform coherent system. Define a degenerate monotone (S, t)-graph $G(V, E)$ to have the vertex set $V = S \cup \{t\}$ and the arc set $E = \{(i, t): i = 1, \ldots, n\}$. Let the set $\text{th}(t)$ be the same as P. In this case $d(P) = d(t, G) = d(G)$, which proves the corollary. ∎

A shelling for a coherent system $[S, P]$ is an ordering of the paths of P such that the discarded set $\{P_1 - P_2, \ldots, P_{k-1} - P_k\}$ consists of single element sets for all $k = 1, \ldots, m$. The system $[S, P]$ is shellable if there exists a shelling for it.
Our Proposition 1 and Proposition 1 of [1] imply

Corollary 2. If a shelling for \([S, P]\) can be found in polynomial time then the domination of \([S, P]\) can be computed in time polynomial in \(n\) and \(m\).

We say that \(X\) is a left shift of \(X'\) if \(\text{supp}(x) = \{i_1, \ldots, i_r\}\), \(\text{supp}(x') = \{j_1, \ldots, j_r\}\) and \(i \leq j_1, \ldots, i_r \leq j_r\). A coherent system \((S, P, f)\) is called regular (2-monotonic) if there exists a renumbering of variables of \(f\) such that the set OPs of \(f\) is closed under left shifts.

Regular systems are shellable [1]. This implies

Corollary 3. The domination of a regular coherent system \((S, P, f)\) can be computed in time polynomial in \(n\) and \(m\).

Let \(G = (V, E)\) be a finite \(r\)-hypergraph with the vertex set \(V\) and the edge set \(E\) of subsets of \(V\), each of size \(r\). The \(r\)-hypergraph \(G\) is called threshold if \(G\) admits a numbering of its vertices such that for any \(v_i, v_j\) \((i < j)\) and any subset \(A \subseteq V\) of cardinality \(r - 1\), \(\{v_i \cup A\} \in E\) implies \(\{v_j \cup A\} \in E\) (see [10]).

Corollary 4. The following counting problems are polynomially solvable in threshold \(r\)-hypergraphs: counting the number of independent sets (vertex covers) of a fixed cardinality, counting maximum (minimum) cardinality independent sets (vertex covers).

Acknowledgements

This work was partially supported by International Soros Science Education Program in Belarus.

References

Scope of the Journal

The aim of this journal is to bring together research papers in different areas of algorithmic and applicable discrete mathematics, as well as applications of combinatorial mathematics to computer science, OR and various areas of science and technology.

Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of the brief outlines of recent research results, the detailed presentation of which might be submitted for possible publication in DAM or elsewhere. The journal will also publish a limited number of book announcements, as well as proceedings of conferences.

Instructions to Authors

All contributions should be written in English or French, should have an abstract in English (as well as one in French if the paper is written in French) and – with the exception of Communications – should be sent in triplicate to Nelly Segal, Editorial Manager, RUTCOR – Rutgers Center for Operations Research, Rutgers University, P.O. Box 5062, New Brunswick, NJ 08903-5062, USA. The authors are requested to put their mailing address on the manuscript. Upon acceptance of an article, the author(s) will be asked to transfer copyright of the article to the Publisher. This transfer will ensure the widest possible dissemination of information.

Detailed instructions can be found in the backmatter of each last issue of a volume. (See also http://www.elsevier.nl/locate/dam)

Instructions for LaTeX manuscripts

The LaTeX files of papers that have been accepted for publication may be sent to the Publisher by e-mail or on a diskette (3.5" or 5.25" MS-DOS). If the file is suitable, proofs will be produced without rekeying the text. The article should be encoded in Elsevier-LaTeX, standard LaTeX, or AMS-LaTeX (in document style `article`). The Elsevier-LaTeX package, together with instructions on how to prepare a file, is available from the Publisher. This package can also be obtained through the Elsevier WWW home page (http://www.elsevier.nl/), or using anonymous FTP from the Comprehensive TeX Archive Network (CTAN). The host-names are: ftp.dunst.de, ftp.tex.ac.uk, ftp.shsu.edu; the directory is: tex-archive/macros/latex/contrib/support/elsevier. No changes from the accepted version are permissible without the explicit approval by the Editor. The Publisher reserves the right to decide whether to use the author's file or not. If the file is sent by e-mail, the name of the journal, Discrete Applied Mathematics, should be mentioned in the 'subject' field of the message to identify the paper. Authors should include an ASCII table (available from the Publisher) in their files to enable the detection of transmission errors.

The files should be mailed to: Log-in Department, Elsevier Science B.V., P.O. Box 2759, 1000 CT Amsterdam, Netherlands. E-mail: m.griffin@elsevier.nl

Subscription Information

Discrete Applied Mathematics (ISSN 0166-218X). For 1997 Volumes 72-79 are scheduled for publication. A combined subscription to Discrete Applied Mathematics and Discrete Mathematics (Vols. 162-177) at reduced rate is available. Subscription prices are available upon request from the publisher. Subscriptions are available in a pre-paid basis only and are entered on a calendar year basis. Issues are sent by surface mail except to the following countries where air delivery via SAL is ensured: Argentina, Australia, Brazil, Canada, Hong Kong, India, Israel, Japan, Malaysia, Mexico, New Zealand, Pakistan, PR China, Singapore, South Africa, South Korea, Taiwan, Thailand, USA. For all other countries air mail rates are available upon request.

Claims for missing issues must be made within six months of our publication (mailing) date.

For orders, claims, product enquiries (no manuscript enquiries) please contact the Customer Support Department at the Regional Sales Office nearest to you:

New York, Elsevier Science, P.O. Box 945, New York, NY 10159-0945, USA. Tel: (+ 1) 212-633-3730, [Toll Free number for North American Customers: 1-888-4ES-INFO (437-4636)]. Fax: (+ 1) 212-633-3860. E-mail: usinfo-f@elsevier.com

Amsterdam, Elsevier Science, P.O. Box 211, 1000 AE Amsterdam, The Netherlands. Tel: (+31) 20-485-3757, Fax: (+ 31) 20-485-3432. E-mail: nlinfo-f@elsevier.nl

Tokyo, Elsevier Science, 9-15, Higashi-Azabu 1-chome, Minato-ku, Tokyo 106, Japan. Tel: (+ 81) 3-5561-5033, Fax: (+ 81) 3-5561-5047, E-mail: ky006050@niftyserve.co.jp

Singapore, Elsevier Science, No. 1 Temasek Avenue, #17-01 Millenia Tower, Singapore 039192. Tel: (+ 65) 434-3727, Fax: (+ 65) 337-2230, E-mail: asiainfo@elsevier.com.sg

Authors' benefits

1. 50 reprints per contribution free of charge.
2. 30% discount on all Elsevier Science books.

US mailing notice – Discrete Applied Mathematics (0166-218X) is published semi-monthly by Elsevier Science B.V., Customer Support Department, P.O. Box 211, 1000 AE Amsterdam, The Netherlands. Fax: (+31) 20-4853432. Annual subscription price in the USA US$ 1732.00 (USA price valid in North, Central and South America only), including air speed delivery. Periodicals postage paid at Jamaica, NY 11451.

USA POSTMASTERS: Send address changes to Discrete Applied Mathematics, Publication Expediting Inc., 200 Meacham Avenue, Elmont, NY 11003. Air freight and mailing in the USA by Publication Expediting.