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Interchange Theorems for Hypergraphs and Factorization of Their
Degree Sequences

A. A. CHERNYAK

The aim of this paper is to unify interchange theorems and extend them to hypergraphs. To this end
sufficient conditions for equality of the /) -distance between equivalence classes and the [y-distance
between corresponding order-type functions are provided. The generality of this result is demonstrated
by a number of new corollaries conceming the tactorization and the switching completeness of degree
sequences of graphs and hypergraphs.
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INTRODUCTION

Interchange theorems based on simple switching operations for jumping from one graph to
another provide constructive techniques for obtaining important results on graphs and (0,1)
matrices with invariant characteristics. The idea of unifying interchange theorems and extend-
ing them to the class £, of all hypergraphs with edge multiplicity at most  is the aim of this
paper.

The main instrumental result disclosing the common combinatorial nature of intérchange
theorems is given in Section 1. For this, on the set of integer-valued functions defined on a
disjoint union of finite sets, we introduce a double shift operation, consisting of two symmetric
transformations used earlier in [3, 15, 21] for obtaining computable bounds/ofi graph reliability
efficiently. This operation defines an equivalence relation on the set of functions: two functions
are equivalent if one can be transformed to another by a sequence of double shifts. To each
equivalence class corresponds an order-type function which is invariant under double shifts.
Theorem 1.1 provides sufficient conditions for equality of the /;-distance between equivalence
classes and the /| -distance between corresponding order-typée functions.

The general character of Theorem 1.1 is demonstrated in Section 2 which contains a number
of applications of this result:

(1) The concept of interchange is extended to hypergraphs with a fixed partition of the
vertex set. Interchange theorems are deduced for hypergraphs and r-graphs, the latter
generalizing corresponding results from [4,5].

(2) Criteria for the factorization of vertex and edge degree sequences of hypergraphs are
given.

(3) The problem of finding the switching-complete characteristics of graphs arises in con-
nection with graph generation algorithms [6, 12]. Several switching-complete proper-
ties concerning the connectedness of simple graphs were given in [2, 8, 23, 24]. 1t was
proved in |7, 10, 11, 13,20] that degree sequences are switching-complete parameters
in the class of ordinary graphs. Here this result is substantially strengthened. Namely,
the switching completeness of edge degree sequences is established in the general class
of r-multihypergraphs. A similar result for vertex degree sequences is shown to be
valid only for multihypergraphs and r-graphs. It should be noted that degree sequences
remain, to our knowledge, unique numerical parameters whose switching completeness
is justified in subclasses of hypergraphs.
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1. MAIN RESULT

Let V = {vy, ..., v,} be a set of distinct elements and let V = R, U ... U R, be a fixed
partition L of V. ForasetU € 2V let; = [UNR;|,i = 1,...,m. The vector (), ..., tm)
1s called the order type of U. Denote by T[t1, .. .. t,] all subsets of V having the order type
(tlv cooy Im)e

We call the mappings

f:2¥>q0.1,....r}

r-functions. The set of all U/ such that f(U) # 0 is called the support of f and denoted by
supp (f). The r-function f is called degenerate if its support consists of 2-element subsets of
V having the same order type. We write f > g if f(U) = g(U) forany U € 2V,

Set P(v;) = {U : v; € U, U € 2¥), and denote by d(i, f) the sum 3"y, p,,, f(U). We
call an r-function f regular (with respect to £) if

vi, v € Ry implies |d(i, f) —d(j, f)| < 1.
Two r-functions f and g are called consistent (with respect to £) if
Vi, vj € Ry implies [d(i, f) —d(, g) +d(j,8) —d(, ) <1
We say that an r-function f admits a forbidden configuration [v;, v;, U, W] if

vi,vj € Ry, U, we?2V, vi,u; ¢ UUW, fUUy) >0,
SfWUv) >0, fUUv))<r, f(WUy)<r

Given a forbidden configuration [v;, v, U, W], the double shift of an r-function f is the
transformation of f into a function g = shift|v;, v;, U, W] o f defined as follows:

g Uw;) = max{0, f(UUv;)—1}, g(W U v;) = max(0, f(WUv;)—1),
g Uvj)=min{r, f(UUv;)+1}, g(W U v;) = min{r, f(WU ;) + L},
2(Q) = f(Q) for all other Q € 2V.

Obviously, double shifts preserve regularity, consistency and degeneracy. (Notice that our
shifting operation is not related to the shifting operation used in extremal combinatorics.)

On the set of r-functions we define an equivalence relation ~ as follows. f ~ g if and
only if there exists a sequence of double shifts transforming f into g. The equivalence class
containing f is denoted by [ f]. Each class [ f] is.associated with the order-type function h( s,
defined by

hip - ftnd= Y fQ@U). (0
UeT[t.....tm]
hryy is well-defined because the right-hand side of (1) is invariant under double shifts.
Suppose that ||¢| denotes the /;-norm of the function ¢ defined on {s], ..., s¢}, i.e.,

k
el =" lots)1.
i=1
Then the distance p between classes [ f] and [g] is given by

p((f1, [g)) = min{ll f — &Il : (f, & € [f] x [g]}.

Throughout the following we omit the brackets in expressions of the form X U {v}, i.e., we
write X U v.
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THEOREM 1.1. Let f and g be consistent r-functions. Suppose that either r = o0 or both
f and g are regular or both f and g are degenerate. Then

p(Lf). (gD = Ay — Rl

PROOF. Letg = f — g. Then

lglh=> Y la@l= Y | Y W)

(t),eestm) UET 110 m] (1, S HUET 1. ot ]
= Z s, - tm) — Bigi(t, o tdl = By — Bl (2)
(11, .eidm)
Therefore
p(Lf11g1) = lags) — gl 3

Suppose that inequality (3) is strict. Then, in view of (2), there exists a pair of sets (X, Y) of
the same order type such that ¢(X) > 0, g(Y) < 0. Such pairs will be called signed for the
couple (f, g).
Note two obvious facts used in what follows:
If (X, Y) 1s a signed pair for (£, g), then
fX0)>0, gX)<r, fM<r,  g¥)>0. (%)
If a and b are integers, a < b, then
lat+ipi—la+ 1| —=1pb—-1]=0. (*%)
Among (£, 2) € [f] x [g] such that || f — || = p(|f]. [g]), choose & pair (£, g) having a
signed pair (U, W) with a large as possible intersection Z = U N W, _QObviously, U and W
can be represented as

U=ZUPUuvy, W=ZUQUus,

where v;, vy € R, for some 1 < s < m. Consider two cases.

Casel. P = Q =1{. Since

3 g0 =d(. f)—dGugh Y. q(X)=d(h, ) —dih, ),

XeP(;)) XeP(u)
in view of the consistency of f and.g,
Yooam- Y ) <1, @)
XePvj\vy) XeP(vp\vj)

where P(v;\vs) = {X € 2¥:vy; € X, vs ¢ X}. But g(U) — g(W) > 2. Hence there exists a
Y not containing v; and vy, such that g(¥Y Uv;) < g(¥ U vy). It follows that

2r < f(YUu)+gYUuj)+ (G — f(YUu;))+ (r —g(¥Y Uuwy)).
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As all the summands are nonnegative and do not exceed r on the right-hand side of the

inequality, at least three of them are positive. In particular, at least one of the following
conditions holds:

F(¥ Uy >0, fY Uvy) <r; (5)
g¥YUwy) >0, g¥ Uuwyy) <r. 6)

If (5) holds, then, in view of (x), f admits the forbidden configuration {(v;, vy, Z, Y. In this
case we set

f1=shift[vj,vh,Z,Y]Of, 81=8.
Otherwise, if (6) holds, then, by () g admits the forbidden configuration [v;, v4, Y, Z]. In
this case we let
fi=f g =shiftlv;, vy, Y, Z]o g.

Thus, setting g1 = fi — g1, R=Y Uv;, T =Y U vy, (and applying (3*)) we have

lgll = lig1ll = 1g (U] + 1g(W)| + lg(R)| + |¢(T)]
—lg(U) = 1| = lg(W) + 1| — |g(R) + 1| — |g(T) — 1]
=lg®|+ gD —lg(Ry+ 1| — |g(T) — 1| +2 = 2.

But (f1.&1) € | f1 X [g], which contradicts the choice of f and g.

Case 2. |P| = |Q| > 0. Note that (4) is valid in this case as well. Let Uy = Z U P U yy,
W; = ZU QUu;. Since |U, N W| > |Z|, according to the choice of the signed pair (U, W)
we have ¢(Uy) < 0. Similarly, Uy N U| > |Z| and, by the same argument, g(U;) = 0.
Therefore, g(Uy) = 0. Similarly, g(W;) = 0. It follows that

(qU) +q(W;)) —(q(Uy) +q(W}) = 2.

By (4) there exists a Y not containing v; and vy such.that g(¥ Uv;) < g(Y Uwg). So, as in
Case |, at least one of the conditions (5), (6) holds:

First suppose that f and g are degenerate. Then ZU P = {v;}, ZU Q@ = {vs}, ¥ = v,
vy, Vi, Uy € Ry for some | <! < m. Moreover, either g(v, Uv;) < Oor g(v, Uwy) > 0.
I g(v Uvj) < 0, then setting U’ = Z' Uw;, W= Z' Uy, Z' = v;, we arrive at Case 1.
If g(v; U wvp) > 0, then setting U’ = Z' Vv W = Z' Uy, Z' = vy, again we are in the
conditions of Case 1.

Thus in what follows, we take f and\g nondegenerate. Consider two subcases.

Subcase 2.1. | f(Up) = f (W) # r. Clearly at least one of the following conditions holds:

fUn) >0, Fw;) >0 (7
fUp) <, fFW;) <r (8)

Suppose that (7) holds. If, in addition, (5) holds, then by (x) f admits the forbidden configu-
ration [vy, v;, ¥, Z U Q]. In this case we set

f1 = shift[vy, v;, Y. ZU Qo f, 81 =g
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It follows that

lgll = Hiarll = 1g(TY + lg(R)| + lg(W;)| + |g(W)]
—lg(T) — H —g(R) + 1| — |g(W;) = 1| — [g(W) + ]|
= |g(T)| + 1g(R)| — |g(T) — 1] — |g(R) + 1| = 0.

But g1(W;) = =1 < 0, ¢1(U) = qU) > 0, [UNW;| > |Z|, contrary to the choice of
U, w).

If (6) holds, then f(Up) = g(Uy) > 0, therefore g admits the forbidden configuration
[va, v;, ZU P, Y]. In this case we set

h=1 g1 = shift{vy, v;, ZU P, Y]og.

Tt follows that

gl — ligill = g (M) + lg (R} + lg(Up)| + lg(U)]
—lg(T) — 1] = |g(R) + 1| — |gWy) + 1| = |q(U) — 1]
=19(M)I +1g(R)| — 1g(T) = 1| = |g(R) + 1| = 0.

But ¢, (Up) =1 > 0, g1 (W) = qg(W) < 0, |Uy N W| > |Z|, which contradicts the choice of
(U, w).

Since (7) and (8) are symmetric, this concludes the analysis of Subcase 2.1. Moreovet, if
r = oo the theorem is proved.

Subcase 2.2. | f(Up) — f(W;)| = r. Without loss of generality assume that f(Uy) = r,
fW;)=0.If g(Y Uw;) > g(Y Uwy), then (6) holds and the arguments of Subcase 2.1 can
be applied. Now suppose that g(Y U v;) < g(¥ U vy) and (5) holds. Since

0=g(ZUQUv;) <g(ZUQUuw), g(ZUPUv;) <g(ZUPUwy) =7 <

and g is regular, there exists X such that g(X Uv;) > g(X U v If, in addition, g(X Uv;) <
g(X Uvg) and Y is replaced by X, then (6) holds and the arguments of Subcase 2.1 can be
applied. Suppose that g(X Uv;) > ¢(X Uwy). Then f(X U v;)> f(X Uw,). Obviously, f
and g admit the forbidden configurations |v;, vy, X, ¥] and'[v;, vy, X, Z U P]. respectively.
Let

fi =shiftlv;, vy, X, Y] o f, & =shiftlv;, vy, X, ZU Plog.

Then

llgll = llgill = lg(T)| + lg (R lgWUn)i + 1g(U)| — |g(T) — 1] = |g(R) + 1]
—lq(Up) +4} =q¥) — 1] = 0.

But ¢) (W) = ¢g{W) < 0, q1(Up) = qg(Up) + 1 > 0, |W N Uy| > |Z], contrary to the choice
of (U, W). The theorem is proved. u

We present two examples to show the sharpness of Theorem 1.1.

EXAMPLE 1.1. LetV = {1,...,8}, R, = {2 — 1,2i},i = 1,2,3,4. Consider two r-
functions f and g whose supports are {1, 5}, {1, 6}, {1, 8}, {2, 8}. {3, 5}, {4, 5}, {4, 7}. {4. 8}
and {1,5}, {1,7}. {1, 8}. {2, 5}, {3, 8}, {4, 5}, {4, 6}, {4, 8}, respectively. Clearly f and g are
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consistent, but neither degenerate nor regular. Neither of them admits a forbidden configura-
tion. So

1=} gl=1{e}, »UfLgD=If-2ll=38.

However,

hiG, gy =h @, j) =2 fori =1,2and j = 3,4,
hipG, jy=h(, j) =0 elsewhere.

Thus "h[f] - h[g]" =0<38.

EXAMPLE 1.2. LetV =1{1,2,3,4,5,6}, Ry = {1}, Ry = {2}, Ry = (3,4}, R4 = {5. 6}.
Consider two 1-functions f and g whose supports are {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2. 5}, {2, 6)
and {1, 3}, {1, 6}, {2, 3}, {2, 4}, respectively. Clearly, f and g are regular, but not consistent,
Neither of them admits a forbidden configuration. Thus p([ 1, [¢]) = || f —¢g|| = 6. However,

hin(1,3) = h[f](z, 4) =2, h[f](l, 4) = h[f](z, 3H=1,

hie1(1,3) = hig(1,4) = 1, he)(2,3) = 2, and hjy) and k(g are equal to zero elsewhere.
Hence ||hjf) — Agll = 4 < 6.

COROLLARY L.1. Let f and g satisfy the conditions of Theorem 1.1. Then [f] = [g) if
and only if h 5] = hg).

COROLLARY 1.2, Let f and g satisfy the conditions of Theorem 1.1. Then i sy = hig) if
and only if there exists a pair (f, g) € [f] x [g] such that f > g.

2. PARTICULAR CASES

Denote by L, (k) the set of finite hypergraphs in which each edge has the cardinality
and multiplicity at most r, where k € N,r € N U {oo}. Eet £, = |Jjo, £, (k). In the
usual terminology L, , £, £ (k), £,(2), £1(2) are, respectively, r-multihypergraphs, simple
hypergraphs, k-uniform hypergraphs, r-graphs, simple graphs. For G € £, VG and E£G denote
the vertex set and edge set of g. The degree d(v, G) of a vertex v of G is the number of its
edges containing v. G is a spanning subhypergraph of G (G2 < G)) if VG| = VG; and
EGy, € EGy. If Gy < Gy, VG2 = {uy, ..., unls lin=d(vi,G2),i = 1,...,n, then Gz is
called an ({4, ..., I,)-factor of G| (ifl; = lsi= 1, ..., n, then G; is called an {-factor of G ).

For a hypergraph G € £, fix a partition

RIUR,U---UR, &)

of its vertex set where R; are called blocks. Partition (9) is trivial when m = 1. We say
that edges Uy, U € EG generate’a forbidden configuration if the following holds: there
exist vertices u, u; contained in the same block such that u; € U;, u; ¢ Uy, the sets
W; = (U;\u;) U u;41 having a multiplicity not equal to r, i = 1, 2 (indices are modulo 2).
We define an interchange over G, in which U; and U; generate the forbidden configuration,
to be the transformation decreasing by | the multiplicity of Uy and Uz and increasing by 1
the multiplicity of W| and W;. If m = 1, the above definitions are equivalent to the classic
concepts of interchange [1, 13, 20] and forbidden configuration [18, 19].

Now suppose that each block R; consists of vertices of degree d;, i =1, ..., m, where all d;
are distinct. Then (9) is called the degree partition for G and the set {d, ..., dn} is the degree
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set of G. The degree of an edge U of G is the sequence (ay. .. .. am) such that g; is the number
of vertices of degree d; contained in U, i = 1,...,m. The edge (vertex) degree sequence
edeg(G) (vdeg(G)) is the list of edge (vertex) degrees of G. Degree sequences coinciding
under an appropriate permutation of their terms are considered to be equal. Note that edeg(G)
uniquely determines vdeg(G) [9). Hence the degree sets of hypergraphs G and H are the same
provided their edge degree sequences are equal.

If « is a degree sequence of G € £, (k) then « is called realizable in £, (k) and G is the
realizationof a. Leta = (ay, ..., ap)and B = (by, ..., by). We say that « is consistent with
B,ifl < a; —b; <!+ 1 forsome integer ! > 0. || will denote the length of «.

Let G € £, and let (9) be an arbitrary partition of VG. Define an r-function f corresponding
to (9) as follows: for U € VG = {v, ..., vz} f(U) is the multiplicity of U in G. Clearly,
d(i, f) = d(v;, G) and an operation of double shift over f corresponds to an interchange over
G.

Now suppose that (9) is the degree partition for G. Then the order type of an essential

clement U of f is the degree of the edge U in G, and the order-type function hjs1(t1, ..., tm)
gives the number of edges of degree (71, ..., #,), thereby determining edeg(G).

Let (9) be the degree partition for G and H. (Note that the degree sets of G and H are
not necessarily the same). We say that edeg(G) majorizes edeg(H) if each term (11, ..., #y)

occurs in edeg(G) at least as many times as in edeg(H).
Taking into account the preceding comments, from Corollary 1.2 we obtain the following
result.

THEOREM 2.1. Let (9) be the degree partition of H|, Hy € L, and let VH| = VH;. Then
using a sequence of interchanges one can transform H\, H, into G, G2 such that G, < G,
if and only if edeg(Hy) majorizes edeg(H>).

Since the regularity of -functions in Corollary 1.2 is not necessary when'r.= o0, we have:

THEOREM 2.2. Let Hy, Hs € Lo, VH| = VH> and let (9) be a vertex partition of H, H,
and let m = 1. Suppose that vdeg(H)) is consistent with vdeg(H,).. Then.using a sequence
of interchanges one can transform Hy, H> into G, G, such that Gy < G if and only if for
each k the number of edges of cardinality k in H\ is not less than that in H;.

THEOREM 2.3, Let H), H» € L£,(2), VH, = VHyand let(9) be a vertex partition of
H\, Hy and let m = 1. Suppose that vdeg(H1) is consistent with vdeg(H,). Then using a
sequence of interchanges one can transform Hy, Hs into G\, G2 such that G, < Gy.

PRrROOF. The r-graphs H, and H; correspond to degenerate r-functions whose supports have
the same order type (2). Because of this the condition of regularity in Corollary 1.2 is not
necessary. C

THEOREM 2.4. Let Hy and Hj be bipartite r-graphs with parts Ry and Ry and let (9)
be a vertex partition of Hy, Hy and let m = 2. Suppose that vdeg(H) is consistent with
vdeg(H,). Then using a sequence of interchanges one can transform Hy, H, into G|, G such
that Gy < Gg.

Denote by U(a, 8, r) the set of || x | 8| matrices over {0, 1, ..., r} having the prescribed
row sum vector o and column sum vector . The following corollary of Theorem 2.4 is a
generalization of the corresponding result from [S].

COROLLARY 2.1. LetU(e;, Bi,r) #0,i = 1,2 and let a1(B1) be consistent with az(87).
Then there exist matrices A; € U(ai, B;. r) such that A> < Aq.
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Let x be some structure numerical parameter of a hypergraph G of a subset M of hypergraphs
L, with the trivial partition of their vertex sets. An interchange over G is called conservative
in the class M with respect to x if it transforms G without changing the value of x into
a hypergraph from M. It is defined the equivalence relation < on the set M as follows:
G~ Hifand only if there exists a sequence of conservative interchanges transforming G into
a hypergraph 1somorphic to H. The parameter x is switching complete in the class M if any
two hypergraphs of M are contained in the same equivalence class if and only if they have
equal x.

Notice that any interchange over G with respect to the degree partition is conservative with
respect to the edge degree sequence. Hence, from Corollary 1.1 we have

THEOREM 2.5. Edge degree sequences are switching complete in the class L,.

COROLLARY 2.2. Edge degree sequences are switching complete in the class L, (k) for
anyr > 1,k > 2,

Corollary 2.2 generalizes the corresponding result from [10, 11] for k = 2.

THEOREM 2.6. Vertex degree sequences are switching complete in the class L, (k) if and
only if eitherr = o0 ork = 2.

PROOF. The sufficiency follows from Theorems 2.2 and 2.3, for necessity, we find a coun-
terexample in the class £1(3) (it can be extended to the case of arbitrary » > 2 and k > 4).

Let VG = (1, ..., 14} and let EG consist of all triples {i, j, k} such thati < j < k-andat
least one of the following possibilities holds:

@i=1 j=35 k=14
byi<2, j=<7 k<12
(c) i <3, j=<6, k=10
Set
VH = VG

EH = (EG\{{1,5.14},{2,7, 12}, {3,6, 10}, {1,4, 13}, {2, 6,11}, {3, 5, 9}})
U{{1,10, 12}, {2, 3, 14}, {5, 7,6}, {1, 9, 11}, {2, 3, 13}, (4, 5, 6}}.

By definition, vdeg(G) = vdeg(H). But G and H-are notisomorphic because G does not
admit a forbidden configuration while the edges {179, 11}.and {1, 10, 12} generate a forbidden
configuration in H({1,9, 12}, {1, 10, 11} ¢ EH). O

In the special case of k = 2 Theorem 2.6 implies the corresponding result from [7, 13].
From Theorems 2.2 and 2.3 we have

COROLLARY 2.3, Let! <[; <d+1%=1,..., pandletasequence o = (ay....,ap)
be realizable in Loo(k) (or L£,(2)). Then « has a realization in Lo (k) (or L, (2)) containing
an ({1, ..., lp)-factor if and only if the sequence (ay =1y, ..., ap —1p) is realizable in Lo.(k)
(or L£,(2)).

As for the set £;(2), Corollary 2.3 implies the well-known result on the factorization of
vertex degree sequences conjectured in {14] and proved in [16, 17].
Let

B=(B"..... B, Bi = (i, ... tim), i=1....n tjkeN.  (10)

(Z) denotes a binomial coefficient; (ﬁ) =0 when b > a; ,Bfi means that 8; occurs k; times in
B. We need the following
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LEMMA 2.1 ([9]). The sequence (10) is realizable in L, with hypergraphs having the
degree set {dy, . .., dy,} if and only if the following conditions hold:

1 n
7 Zfsiks =1, wherel; isintegral, i =1,...,m
i s=1

ks < ]ﬂ[(!i) 1
=r- , s=1,...,n
) i=1 tSi

(it is set that o0 - 0 = 0).

Suppose that (10) is realizable in £, with a hypergraph having the degree set {dy. ..., dn).
Then
vdeg(G) = (dl}, ..., d'm).

Let 0, be the n x n zero matrix and let /, be the identity matrix of order n. We also set
B =1y J Jmxn,

B 0
A:[l In]a XT=()’1;-~-y}’na21au~,1n),
n n

al =(di = p)li,...,(dn — Pl k1. ... k).

THEOREM 2.7. Let (10) be realizable in L, with hypergraphs having the degree set
{di, ..., dn). Then (10) has a realization in L, containing a p-factor (p < mind;) if and only
if the system

Ax =a, x>0 (11)

has an integral solution.

PROOF. The necessity: let G be a realization of (10). Suppose that H,G € .L;, H <
G.d(v, G) —d(v, H) = p for any vertex v. Then
vdeg(H) = ((dy — p)', ... (dm — )™,
edeg(H) = (ﬂfl7 ey ﬁ:n)’
S,'Ski, i=1,...,n.

Besides,
n
(d —pli =Y tis;, i=10.,m
=1

Clearly (s(, ..., Sp, k1 — S1..-., kn — 5p)7 is a desired solution of (11).
The sufficiency: let x7 be an integral sohition'of (11). Then

n
di-pli=) iy, i=l..,my <k,s=1,...n
=1

By Lemma 2.1,

k <rﬁ(li)
B A
Hence, again by Lemma 2.1, the sequence
y =" ....B")

is realizable in £, with hypergraphs having the degree set {d; — p,...,dy, — p}. Since 8
majorizes y, the rest follows from Theorem 2.1. O
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The conditions of realizability of vertex degree sequences in £, (k) and £, (2) are effectively
verified [4,7]. Because of this the criterion given in Corollary 2.3 is effectively verified as
well. Unfortunately, polynomial solvability of the corresponding problem for edge degree
sequences, in view of Theorem 2.7, appears to be unlikely apart from some special cases. One
of them is given in the following

COROLLARY 2.4. Let B be the incidence matrix of a bipartite graph. Then the problem of
existence of a realization of (10) in L(2) containing a p-factor is solvable in polynomial time.

PROOF. According to [22}], the matrix B is unimodular, as is the matrix A defined above.
It implies polynomial solvability of the problem of existence of integral solution of (11) [22].
The rest follows from Theorem 2.7. ]

A hypergraph G from L (k) is called the T3-threshold [19] if there exists a numbering of its
vertices such that for any v;, v; € VG,i < j, and any (k — 1)-element subset U C VG not
containing v; and v, the following sentence is true:

({v; WU} € EG) = ({v; UU} € EG).

LEMMA 2.2 ([19]). A hypergraph G from L (k) is Tz-threshold if and only if G does not
contain any forbidden configuration (under the trivial partition of VG).

From Lemma 2.2 and Theorem 2.5 we have

COROLLARY 2.5. T3-threshold hypergraphs are uniquely determined by theiredge degree
sequences.

COROLLARY 2.6. Each k-uniform Ts-threshold hypergraph is uniquely determined by its
vertex degree sequence if and only if k = 2.

PROOF. T3-threshold hypergraphs are threshold graphs [19] which are known to be uni-
graphs [18]. The rest follows from the proof of Theorem 2.6 where one of the constructed
hypergraphs is 73-threshold (by Lemma 2.2). O
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