ЛАЗЕРНАЯ ФИЗИКА И СПЕКТРОСКОПИЯ

ТЕЗИСЫ ДОКЛАДОВ

г. Гродно 1995 г. ВНУТРИРЕЗОНАТОРНОЕ ВКР В НЕЛИНЕИНЫХ КРИСТАЛЛАХ КАК ЭФФЕКТИВНЫИ МЕТОД ПОЛУЧЕНИЯ ШИРОКОГО НАБОРА ЧАСТОТ ИЗЛУЧЕНИЯ В ВИДИМОМ ДИАПАЗОНЕ

и.М. Гулис, К.А. Саечников Белорусский государственный университет 220050, г. Минск

В работах [1] продемонстрирована возможность получения широкого набора частот излучения в видимом диапазоне на основе внутрирезонаторного ВКР в нелинейных кристаллах с одновременным сложением частот.

В докладе приводятся новые результаты по схемным решениям ВКР-лазеров с нелинейным сложением, позволившие существенно расширить набор генерируемых частот излучения. Более подробно анализируются механизмы ВКР в кристалле L1NbO₃ с использованием которого получено излучение на 16 частотах в диапазоне от 505 до 565 нм.

Экспериментальная установка на основе ИАГ:Nd $^{3+}$ лазера (λ_0 =1,06 мкм) с синхронизованными модами описана в [1]. Внутрирезонаторный кристалл L1NbO $_3$ ориентировался так, чтобы направление электрического вектора излучения лазера составляло угол \cong 45 $^{\circ}$ с главной плоскостью кристалла.

Полученные экспериментальные результаты приведены в таблице. Проведенный анализ показывает, что механизм процессов рассеяния, приводящий к излучению указанных в таблице длин волн можно представить следующим образом. Когда излучение лавера распространяется в кристалле LiNbO, под углом в (угол, образованный направлением распространения основного излучения в кристалле LiNbO2 с оптической осью кристалла), близким к углу синхронизма для ГВГ, интенсивность обыкновенной волны оказывается выше пороговой интенсивности для ВКР на обыкновенном поляритоне (симметрия E) с $v_{\rm D1}{\sim}492~{\rm cm}^{-1}$. При увеличении угла 8 интенсивность о-о рассеяния на обыкновенном поляритонене не измеэффективность е-о рассеяния увеличивается и при не-90⁰ угле котором близком К θ интенсивность компоненты основного излучения оказывается достаточной для

возбуждения ВКР на обыкновенном поляритоне с $v_{\rm p2}{\simeq}115~{\rm cm}^{-1}$.

$v_{\rm p1}^{=492~\rm cm^{-1}};$		$v_{\rm p1}$ =115 cm ⁻¹	
λ, HM	механизм суммирования	λ, HM	механизм суммирования
505,7	$(\nu_{\rm L} + \nu_{\rm p_1}) + (\nu_{\rm L} + \nu_{\rm p_1})$	526,1	$(v_{L} + v_{p2}) + (v_{L} + v_{p2})$
518,5	$v_{\mathrm{L}}^{+}(v_{\mathrm{L}}^{-}v_{\mathrm{p1}}^{-})$	529,0	$v_{\mathrm{L}}^{+}(v_{\mathrm{L}}^{-}+v_{\mathrm{p2}}^{-})$
532,0	$v_{\mathrm{T}}^{\perp} + v_{\mathrm{T}}^{\perp}$	532,0	$v_{\mathrm{T}} + v_{\mathrm{T}}$
546,3	$v_{\mathrm{L}}^{\mathrm{L}} + (v_{\mathrm{L}}^{\mathrm{L}} - v_{\mathrm{D1}}^{\mathrm{L}})$	535,3	$v_{\text{L}}^+ (v_{\text{L}}^- v_{\text{p2}})$
561,4	$(v_{L} - v_{D1}) + (v_{L} - v_{D1})$	538,5	$v_{\rm L}^+$ ($v_{\rm L}^-$ - $2v_{\rm pa}$
	$v_{\rm L}^{+}(v_{\rm L}^{-2}v_{\rm D1}^{-1})$		$(v_{\rm L} - v_{\rm p2}) + (v_{\rm L} - v_{\rm p2})$
577,7	$(v_{\rm L} - v_{\rm p1}) + (v_{\rm L} - 2v_{\rm p1})$	541,7	$v_{\rm L}^+$ ($v_{\rm L}^-$ 3 $v_{\rm pa}$
595,0	$(v_{L}-2v_{p_{1}}^{P})+(v_{L}-2v_{p_{1}}^{P})$		$(v_{\rm L} - v_{\rm p2}) + (v_{\rm L} - 2v_{\rm p2})$
	- r r	545,2	$(v_{\rm L} - v_{\rm p2}^{\rm FL}) + (v_{\rm L} - 3v_{\rm p2}^{\rm FL})$
			$(v_{\rm L} - 2v_{\rm p2}^{\rm r}) + (v_{\rm L} - 2v_{\rm p2}^{\rm r})$
		548,7	$(v_{\rm L}^{-2}v_{\rm p2}^{\rm r})+(v_{\rm L}^{-3}v_{\rm p2}^{\rm r})$
			$(v_{L} - v_{p_1}) + (v_{L} - v_{p_2})$
		552,5	$(v_{\rm L} - 3v_{\rm p2}^{\rm r}) + (v_{\rm L} - 3v_{\rm p2}^{\rm r})$
	XC)	$(v_{L} - v_{p_1}^{r}) + (v_{L} - 2v_{p_2}^{r})$
		557,1	$(v_{\rm L} - v_{\rm p1}) + (v_{\rm L} - 3v_{\rm p2})$
	3	564,5	$(v_{L}-2v_{p_{1}})+(v_{L}-v_{p_{2}})$

Используя выражения для волновых векторов возбуждаемых поляритонных колеоаний при коллинеарном рассеянии можно показать, что частота поляритона $v_{\rm p1}{}^{\scriptstyle \cong}492~{\rm cm}^{-1}$ сответствует о-о рассеянию на поляритонной ветви $v_{\rm LO}{}^{\scriptstyle \cong}454~{\rm cm}^{-1}$, $v_{\rm TO}{}^{\scriptstyle \cong}582~{\rm cm}^{-1}$, а $v_{\rm p2}{}^{\scriptstyle \cong}115~{\rm cm}^{-1}$ — е-о рассеянию на поляритонной ветви $v_{\rm E}^{\rm TO}$ =90 см⁻¹ и $v_{\rm E}^{\rm LO}$ =105 см⁻¹ , при котором теоретическое значение $v_{\rm p2}{}^{\scriptstyle \cong}110~{\rm cm}^{-1}$, что хорошо согласуется с экспериментальным значением.

1. Бельский А.М., Гулис И.М., Саечников К.А. и др. Кв. электр. 1992. Т19. N8, С 769-771; там же 1994. Т21. N4, С.371-372; там же 1994. Т21. N8, С.767-768.