## АКТУАЛЬНЫЯ ПРАБЛЕМЫ

фізікі, матэматыкі, інфарматыкі



## А. С. Волкова, Л. Н. Марголин

## ВЛИЯНИЕ 7-ОБЛУЧЕНИЯ НА НЕЛИНЕЙНЫЕ СВОЙСТВА МОДИФИЦИРОВАННЫХ КРИСТАЛЛОВ TGS

Выяснение закономерностей влияния различных несовершенств кристалличаской решетки является одной из интереснейших и практически важных проблем в физике сегнетоэлектриков. Кристалл с дефектами — весьма сложная физическая система, не допускающая пока строгого теоретического анализа. Наибольший интерес с прикладной точки зрения представляют реальные системы, далекие от идеальности, т. е. кристаллы с дефектами. Специфика влияния дефектов на свойства кристаллов связана с тем, что искажения в структуре, вносимые дефектами, могут охватывать большие области. Из-за дальнодействия даже малая концентрация дефектов приводит к изменению не только локальных, но и макроскопических свойств кристаллов, что отражается на аномалиях термодинамических свойств. Эффективным целенаправленным методом изменения степени дефектности кристаллической решетки является у-облучение.

В данной работе приводятся результаты исследований нелинейных свойств модифицированных кристаллов группы TGS, подвергнутых различным дозам у-облучения. Известно, что в основе TGS (триглицинсульфата) лежит гликоколь, т. е. глициновая группа, которая относится к аминокислотам. Каждая аминокислота имеет свою, характерную для нее R-группу. Учитывая то, что и L-валин (L-V) и L- $\alpha$ -аланин (L-A) относятся к неполярной группе аминокислот, то при добавлении в раствор TGS (с учетом стехиометрии) этих модификаторов можно получить сегнетоэлектрические кристаллы с определенной доменной структурой. Структура полученных модифицированных кристаллов будет разной, т. к. L- $\alpha$ -аланин в R-радикале имеет одну группу CH<sub>3</sub>, а L-валин — две симметричные группы CH.

Качественные модифицированные кристаллы LVTGS и LATGS были выращены из растворов, содержащих 10 моль % модификатора, при температурах, далеких от фазовых переходов. Выбор температурного режима был обусловлен тем, что структура кристаллов формируется только в сегнетофазе в процессе роста кристаллов.

Модифицированные кристаллы LVTGS и LATGS были подвергнуты γ-облучению в широком диапазоне доз (от 0,01 Мрад до 20 Мрад). Облучение проведено при 20° С на стандартном кобальтовом источнике Со<sup>60</sup> с энергией ~ 1,25 МэВ. Необходимые дозы γ-облучения набирались при интенсивности облучения ~ 6 Мрад/час. Результаты исследования диэлектрических свойств в слабых электрических полях представлены в табл. 1.

Как следует из полученных данных облучение оказывает существенное влияние на температурный ход зависимости  $\epsilon(T)$ . Для кристаллов LVTGS облучение малыми дозами (до 0,5 рад) приводит к некоторому увеличению значения  $\epsilon$  при температуре фазового перехода ( $T_c$ ). С дальнейшим увеличением дозы облучения наблюдается резкое уменьшение значения  $\epsilon_{\text{макс}}$  и при дозе в 20 Мрад максимум в зависимости  $\epsilon(T)$  практически не наблюдается, диэлектрическая проницаемость

монотонно убывает. У кристаллов LATGS значения  $\epsilon$  при  $T_c$  уменьшаются с увеличением дозы  $\gamma$ -облучения. Исследования показали, что с увеличением дозы облучения наблюдается «размытие» фазового перехода как у кристаллов LATGS, так и у LVTGS. Температура фазового перехода ( $T_c$ ) смещается в сторону более низких температур. Для кристаллов LATGS фазовый переход еще сохраняется и при дозах облучения 20 Мрад.

Таблица 1

| Доза ү-облуче- | LV                                             | TGS                         |                    | LATGS                                   |                    |                      |  |
|----------------|------------------------------------------------|-----------------------------|--------------------|-----------------------------------------|--------------------|----------------------|--|
| ния, Мрад      | ε, 10 <sup>3</sup> п <b>р</b> и Τ <sub>с</sub> | T <sub>c</sub> °, C<br>49,5 | T <sub>c</sub> °,C | ε, 10 <sup>3</sup> при Τ <sub>c</sub> ° | T <sub>c</sub> °,C | T <sub>c</sub> °, °C |  |
| 0              | 19,00                                          |                             | 48,8               | 2,14                                    | 50,2               | 47,2                 |  |
| 0,01           | 19,81                                          | 49,2                        | 48,7               | 1,96                                    | 49,8               | 46,6                 |  |
| 0,1            | 22,51                                          | 48,9                        | 48,6               | 1,30                                    | 49,6               | 46,3                 |  |
| 0,5            | 7,95                                           | 48,4                        | 47,2               | 1,03                                    | 49,2               | 45,1                 |  |
| 1,0            | 3,68                                           | 47,8                        | 46,8               | 0,71                                    | 48,7               | 44,6                 |  |
| 5,0            | 0,73                                           | 43,8                        | 42,6               | 0,35                                    | 43,7               | 38,1                 |  |
| 10,0           | 0,39                                           | 38,5                        | 30,5               | 0,32                                    | 39,8               | 33,5                 |  |
| 20,0           | -                                              | -                           | \                  | 0,16                                    | 21,1               | 18,1                 |  |

Для всех исследованных облученных кристаллов LVTGS и LATGS хорошо выполняется закон Кюри–Вейсса (при дозах не превышающих 10 Мрад). По графикам зависимости  $\varepsilon^{-1}(T)$  определены постоянные C и температура Кюри–Вейсса ( $T^{\circ}$ ).

Проведенные исследования показали, что  $\gamma$ -облучение кристаллов LVTGS и LATGS приводит к значительным изменениям в зависимостях tg  $\delta$ (T). С увеличением дозы облучения максимальные значения диэлектрических потерь (вблизи  $T_c$ ) уменьшаются. Быстрое уменьшение tg  $\delta$ <sub>макс</sub> отмечается в кристаллах LVTGS при дозах (0,01–0,05) Мрад. При дозах облучения больших 5 Мрад значения tg  $\delta$  прак-тически остаются постоянными во всем температурном интервале (от  $20~^{\circ}$  C до  $75~^{\circ}$  C).

Диэлектрические параметры  $\gamma$ -облученных кристаллов LVTGS и LATGS достаточно устойчивы и сохраняют свои значения. Это указывает на то, что  $\gamma$ -облучение приводит к значительному закреплению доменной структуры кристаллов, которая сформировалась в процессе роста кристаллов.

Нелинейные свойства γ-облученных кристаллов LVTGS и LATGS в сильных полях исследовались по току через образец. Эффективная диэлектрическая проницаемость кристаллов LVTGS и LATGS изменяется нелинейно с увеличением напряженности переменного электрического поля.

При облучении общий характер зависимости  $\epsilon_{\text{эфф}}(E_{-})$  сохраняется при дозах, не превышающих 5 Мрад, хотя максимальное значение  $\epsilon_{\text{эфф}}$  уменьшается с увеличением дозы и сам максимум смещается в сторону больших значений поля. При дозе облучения в 20 Мрад  $\epsilon_{\text{эфф}}$  практически не изменяется с увеличением напряженности поля.

Кристаллы LVTGS и LATGS имеют три области нелинейности, которые связаны с поведением доменной структуры при изменении электрического поля. Области нелинейности сохраняются и для  $\gamma$ -облученных кристаллов при дозах, не превышающих 1 Мрад. С увеличением дозы облучения (до 10 Мрад) одна область нелинейности исчезает. Для всех кристаллов LVTGS и LATGS с увеличением дозы  $\gamma$ -облучения, резко возрастают пороговые поля ( $E_n$ ) и поля, при которых достигаются  $\epsilon_{\text{макс}}$ , т. е.  $\epsilon_{\text{кмакс}}$  (табл. 2).

Таблица 2

| Доза<br>ү-облучения,<br>Мрад | LVTGS                                  |                                          |                                              |                             | LATGS                                  |                                          |                                              |                             |
|------------------------------|----------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------|----------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------|
|                              | Е <sub>макс</sub> ,<br>10 <sup>3</sup> | Е <sub>п</sub> , 10 <sup>3</sup><br>В/см | Εε <sub>ΜΒΙΟ</sub> ,<br>10 <sup>3</sup> Β/см | N, 10 <sup>-3</sup><br>cm/B | ε <sub>макс</sub> ,<br>10 <sup>3</sup> | Е <sub>п</sub> , 10 <sup>3</sup><br>В/см | Εε <sub>макс</sub> ,<br>10 <sup>3</sup> Β/см | N, 10 <sup>-3</sup><br>см/В |
| 0                            | 22,91                                  | 0,04                                     | 0,48                                         | 398,2                       | 12,00                                  | 0,50                                     | 0,92                                         | 176,2                       |
| 0,1                          | 19,95                                  | 0,25                                     | 0,87                                         | 251,2                       | 5,75                                   | 1,55                                     | 6,75                                         | 4,93                        |
| 0,5                          | 8,32                                   | 0,35                                     | 2,40                                         | 45,7                        | 2,20                                   | 2,60                                     | 8,20                                         | 2,64                        |
| 1,0                          | 2,57                                   | 1,26                                     | 3,47                                         | 10,7                        | 1,80                                   | 4,00                                     | 9,80                                         | 1,34                        |
| 5,0                          | 1,82                                   | 8,32                                     | 15,14                                        | 1,38                        | 0,76                                   | 14,00                                    | 30,00                                        | 0,30                        |
| 10,0                         | 1,00                                   | 9,55                                     | 17,38                                        | 0,48                        | 0,54                                   | 32,00                                    | 54,00                                        | 0,08                        |

По данным  $\epsilon_{\text{нач.}}$ ,  $\epsilon_{\text{макс}}$ ,  $\epsilon_{\text{кмакс}}$  рассчитана нелинейность N  $\gamma$ -облученных кристаллов LVTGS и LATGS.

Полученные результаты указывают на то, что облучение повреждает структуру кристаллической решетки, вызывает в сегнетоэлектрическом кристалле изменение симметрии структуры, при больших дозах облучения (20 Мрад) приводит к уничтожению сегнетоэлектрических свойств. Подавление сегнетоэлектрических свойств в рассматриваемых кристаллах под действием у-облучения идет гораздо быстрее в кристаллах LVTGS, что очевидно связано со значительным увеличением числа разрушенных сегнетоактивных диполей за счет повреждения химических связей в радикале L-валина, ответственных за создание этих диполей.