Богданович С. А., Ермолицкий А. А. Каноническая связность и второе фундаментальное тензорное поле почти гиперэрмитовой структуры второго рода типа (J_1, J_2, P)

Понятия канонической связности \overline{V} и второго фундаментального терзорного поля h G-структуры были введены вторым автором и в этих терминах описана геометрия почти эрмитовых структур и структур почти произведения, [1].

Пусть M (dimM=4n) — риманово многообразие с римановой метрикой \tilde{g} , на котором заданы тензорные поля J_1 , J_2 , P типа (1, 1), определяющие почти гиперэрмитову структуру второго рода типа (J_1, J_2, P) , то есть удовлетворяющие условиям

$$J_1^2 = J_2^2 = -I$$
, $P^2 = I$, $P = J_1J_2 = J_2J_1$,
 $g(J_1X, J_1Y) = g(J_2X, J_2Y) = g(PX, PY) = g(X, Y)$,

где g — риманова метрика на M, которую можно определить по формуле

$$g(X, Y) = \frac{1}{4} \left(\widetilde{g}(X, Y) + \widetilde{g}(J_1 X, J_1 Y) + \widetilde{g}(J_2 X, J_2 Y) + \widetilde{g}(PX, PY) \right).$$

Эту структуру будем обозначать (J_1, J_2, P, g) .

Почти комплексные структуры (J_1, g) и (J_2, g) являются эрмитовыми, а структура (P, g) — римановой структурой почти произведения.

TEOPEMA 1. Пусть ∇ — риманова связность метрики g. Тогда каноническая связность $\overline{\nabla}$ структуры (J_1, J_2, P, g) определяется по формуле

$$\overline{\nabla}_X Y = \frac{1}{4} \left(\nabla_X Y - J_1 \nabla_X J_1 Y - J_2 \nabla_X J_2 Y + P \nabla_X P Y \right).$$

Связность $\overline{\nabla}$ является метрической и $\overline{\nabla} J_1 = \overline{\nabla} J_2 = \overline{\nabla} P = 0$.

Пусть $\frac{1}{\nabla}$, $\frac{2}{\nabla}$ и $\frac{P}{\nabla}$ — каноническая связность структуры (J_1, g) , (J_2, g) и (P, g) соответственно.

TEOPEMA 2. Ecnu
$$\nabla J_1 = 0$$
, mo 1) $\overrightarrow{\nabla} = \nabla u$ 2) $\overrightarrow{\nabla} = \overrightarrow{\nabla} = \overrightarrow{\nabla} = \overrightarrow{\nabla}$.

TEOPEMA 3. *Ecnu*
$$\overline{\nabla} = \nabla$$
, mo $\frac{1}{\nabla} = \frac{2}{\nabla} = \frac{P}{\nabla} = \nabla$.

Второе фундаментальное тензорное поле h структуры (J_1, J_2, P, g) определяется по формуле

$$h_X Y = \nabla_X Y - \overline{\nabla}_X Y$$
.

Пусть h^1 , h^2 и h^P — второе фундаментальное тензорное поле структуры (J_1, g) , (J_2, g) и соответственно (P, g).

TEOPEMA 4. 1)
$$h_X Y = \frac{1}{2} (h_X^1 Y + h_X^2 Y + h_X^P Y),$$

2) $h_X^1 Y = h_X^P Y + P h_X^2 P Y,$
3) $h_Y^2 Y = h_Y^P Y + P h_Y^1 P Y.$

Рассмотрим тензорные поля кручения \overline{T} и кривизны \overline{R} связности $\overline{\nabla}$.

ТЕОРЕМА 5. Если \overline{T}^1 и \overline{T}^2 — тензорное поле кручения связности $\overset{1}{\nabla}$ и $\overset{2}{\nabla}$, а \overline{T}^P — связности $\overset{P}{\nabla}$, то

$$\overline{T}_X Y = \frac{1}{2} \left(\overline{T}^1_X Y + \overline{T}^2_X Y + \overline{T}^P_X Y \right).$$

TEOPEMA 6. Если R, \overline{R}^1 , \overline{R}^2 и \overline{R}^P — тензорное поле кривизны связности ∇ , $\overline{\nabla}$, $\overline{\nabla}$ и $\overline{\nabla}$ соответственно, то для любых векторных полей X. Y и Z на M

$$\overline{R}_{XY}Z = h_X h_Y Z - h_Y h_X Z + \overline{R}_{XY}^1 Z + \overline{R}_{XY}^2 Z + \overline{R}_{XY}^P Z + \frac{1}{4} \left(J_1 R_{XY} J_1 Z + J_2 R_{XY} J_2 Z - P R_{XY} P Z - 5 R_{XY} Z \right).$$

Литература.

1. Ермолицкий А. А. Римановы многообразия с геометрическими структурами // Мн.: БГПУ, 1998. – 196 с.